Logic Exercises

Technical University of Munich CHAIR FOR LOGIC AND VERIFICATION

PROF. TOBIAS NIPKOW Kevin Kappelmann

SS 2022 EXERCISE SHEET 11 08.07.2022

Exercise 11.1. [This Is Unnatural]

Let $\mathcal N$ be the standard model of the natural numbers. In tutorial exercise 10.4, we proved that any countable axiomatisation T of N (i.e. $Cn(T) = Th(N)$) over some signature Σ admits another, non-isomorphic model \mathcal{N}' (in particular, $Cn(T) = Th(\mathcal{N}')$).

Prove that \mathcal{N}' contains not only one, but infinitely many non-standard natural numbers $d_n \in U^{\mathcal{N}'},$ i.e. $\mathcal{N}'[d_n/x] \models x \neq m$ for all $n,m \in \mathbb{N}$ and $\mathcal{N}'[d_n/x, d_m/y] \models x \neq y$ for all $n, m \in \mathbb{N}$ with $n \neq m$.

Solution:

First note that $Th(\mathcal{N}) = Cn(T) = Th(\mathcal{N}')$. Thus, $\mathcal{N} \models S \iff \mathcal{N}' \models S$ for any Σ -sentence S.

Now consider $d_n \coloneqq (c+n)^{\mathcal{N}'}$ for any $n \in \mathbb{N}$. We show that $\mathcal{N}' \models c+n \neq m$ for any $m \in \mathbb{N}$. We have $\mathcal{N} \models \forall k.(k+n=m \rightarrow k=m-n)$. Hence $\mathcal{N}' \models \forall k.(k+n=m \rightarrow k=m-n)$, and thus $\mathcal{N}' \models c + n = m \rightarrow c = m - n$. For the sake of contradiction, assume $\mathcal{N}' \models c + n = m$. Then by the previous, $\mathcal{N}' \models c = m - n$. But also $\mathcal{N}' \models c \neq k$ for all $k \in \mathbb{N}$ by construction of \mathcal{N}' , contradiction.

It remains to prove that $\mathcal{N}' \models c+n \neq c+m$ for $n \neq m$. Since $\mathcal{N} \models \forall k$. $(k+n \neq k+m \leftrightarrow n \neq m)$ and $n \neq m$ by assumption, we get $\mathcal{N}' \models c + n \neq c + m$.

Exercise 11.2. [Decidability of Complete Theories]

Assume S is finitely axiomatizable and complete, i.e. $F \in S$ or $\neg F \in S$ for any sentence F.

- 1. Given only the axiomatization of S, give a procedure deciding whether $S \models F$ for any sentence F.
- 2. Can you obtain a similar result when the assumption is that the axiom system is only recursively enumerable?

Solution:

- 1. Let M be the set of axioms. Run resolution on $M \wedge F$ and $M \wedge \neg F$ in parallel. If $F \notin S$, then $M \wedge F \vdash \Box$ and the first resolution terminates. If $F \in S$, then $M \wedge \neg F \vdash \Box$ and the second resolution terminates.
- 2. Yes, by compactness. Enumerate all finite subsets of the axiom set and execute the resolution calls in a dovetailing approach.

Exercise 11.3. [One Finite, All Finite]

Show that if a theory is finitely axiomatizable, any countable axiomatization of it has a finite subset that axiomatizes the same theory. In other words, if $Cn(\Gamma) = Cn(\Delta)$ with Γ countable and Δ finite, then there is a finite $\Gamma' \subseteq \Gamma$ with $Cn(\Gamma') = Cn(\Gamma)$. Can you also obtain Γ' effectively?

Solution:

Let us identify Δ as the formula $\bigwedge_{F\in\Delta} F$. It suffices to find a finite subset $\Gamma' \subseteq \Gamma$ that axiomatizes $Cn(\Delta)$. For this, it is sufficient to find $\Gamma' \subseteq \Gamma$ such that $\Gamma' \models \Delta$, which is equivalent to $\Gamma' \cup {\neg \Delta}$ being unsatisfiable.

We know that $\Gamma \cup {\neg \Delta}$ is unsatisfiable because Γ axiomatizes $Cn(\Delta)$. By compactness, there must be a finite subset that is unsatisfiable. We can find this subset by enumerating all finite subsets $\Gamma' \subseteq \Gamma$ and running resolution on $\Gamma', \neg \Delta$.

Exercise 11.4. [Natural Deduction]

Prove the following formula using natural deduction.

$$
\neg(\forall x(\exists y(\neg P(x) \land P(y))))
$$

Solution:

Homework 11.1. [Counterexamples from Sequent Calculus] (++) Consider the statement $\forall x (P(x) \rightarrow \neg P(f(x))).$

- 1. What happens when trying to prove the validity of this formula in sequent calculus?
- 2. How can we derive a countermodel from the proof tree?
- 3. Is there a smaller countermodel?

Solution:

The proof tree gets stuck:

$$
\frac{P(y), P(f(y)) \Rightarrow}{P(y) \Rightarrow \neg P(f(y))} \neg R
$$

\n
$$
\Rightarrow P(y) \rightarrow \neg P(f(y)) \rightarrow R
$$

\n
$$
\Rightarrow \forall x (P(x) \rightarrow \neg P(f(x))) \forall R
$$

As in the lecture, we can create a countermodel A: Let U_A be the set of all terms over $y, f(\cdot)$, set $y^{\mathcal{A}} := y$, $f^{\mathcal{A}}(t) := f(t^{\mathcal{A}})$, and $P^{\mathcal{A}} := \{y, f(y)\}\$. Then $\mathcal{A} \models P(y)$ and $\mathcal{A} \models P(f(y))$ and hence $A \not\models \forall x (P(x) \rightarrow \neg P(f(x)))$. Note that A is infinite, but there are countermodels with just two elements $\{a, b\}$: Set $f(a) := b$, $f(b) := b$, $P(a)$ and $P(b)$. Then $P(a)$ and $P(f(a)) = P(b).$

Homework 11.2. [Natural Deduction]

$$
(++)
$$

Prove the following statements using natural deduction.

1.
$$
\neg \forall x \exists y \forall z (\neg P(x, z) \land P(z, y))
$$

2.
$$
\exists x (P(x) \to \forall x P(x))
$$

Solution:

Here's an outline for the second task. You can ask for further hints on Zulip.

$$
\begin{array}{cccc}\n&\frac{[P(x_0)]_3 & [\neg P(x_0)]_2}{\perp} & \frac{[P(x_0)]_3 & [\neg P(x_0)]_2}{\perp} & \frac{[P(x_0)]_3 & [\neg P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_1}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_1}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} & \frac{[P(x_0)]_2}{\perp} \\
& & & \frac{[P(x_0)]_2}{\perp} & \frac{[P
$$

Homework 11.3. [Closure Operator] (+)

Show that C_n is a [closure operator,](https://en.wikipedia.org/wiki/Closure_operator) i.e. C_n fulfills the following properties:

- $S \subset Cn(S)$
- if $S \subseteq S'$ then $Cn(S) \subseteq Cn(S')$
- $C_n(C_n(S)) = C_n(S)$

Solution:

In the following, suppose S, S' are sets of Σ -sentences and F is a Σ -sentence.

- $F \in S \Longrightarrow S \models F \Longrightarrow F \in Cn(S)$
- $F \in Cn(S) \Longrightarrow S \models F \Longrightarrow S' \models F \Longrightarrow F \in Cn(S')$
- From the first property, we get $C_n(S) \subseteq C_n(C_n(S))$. For the other direction, we have $F \in C_n(C_n(S)) \Longrightarrow C_n(S) \models F \Longrightarrow^{(*)} S \models F \Longrightarrow F \in C_n(S).$ We have (*) because $\mathcal{A} \models Cn(S)$ iff $\mathcal{A} \models S$ by definition of Cn .

Homework 11.4. [Elementary Classes] (++)

In this exercise, we assume that all structures and formulas share the same signature Σ .

We define the operator $Mod(S)$ that returns the class of all structures that model a set of formulas S. In other words, $Mod(S)$ contains all A such that $A \models S$.

A class of models M is said to be *elementary* if there is a set of formulas S such that $M = Mod(S)$. If S is just a singleton set, i.e. there is a formula F such that $S = \{F\}$, then M is basic elementary.

Prove:

- 1. A class of models M is basic elementary if and only if there is a finite set of formulas S such that $M = Mod(S)$.
- 2. If M is basic elementary and $M = Mod(S)$ for countable S, then there is a finite subset $S' \subseteq S$ such that $M = Mod(S')$.

Solution:

For the first task, simply take $F \coloneqq \bigwedge_{G \in S} G$.

For the second task, it suffices to show that $Mod(S) = Mod(S') \iff Cn(S) = Cn(S')$. The result then follows from tutorial exercise 11.3. Here's the direction from left to right:

$$
F \in Cn(S) \iff \mathcal{M} \models F \text{ for any model } \mathcal{M} \text{ of } S
$$

$$
\iff \mathcal{M} \models F \text{ for any } \mathcal{M} \in Mod(S)
$$

$$
\iff \mathcal{M} \models F \text{ for any } \mathcal{M} \in Mod(S')
$$

$$
\iff \mathcal{M} \models F \text{ for any model } \mathcal{M} \text{ of } S'
$$

$$
\iff F \in Cn(S')
$$

The other direction is similar.

The logic of the world is prior to all truth and falsehood.

— Ludwig Wittgenstein $^{\rm l}$

 ${}^{1}\mathrm{Yes},$ Ludwig strikes again – he just dropped too many great quotes.