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Exercise 11.1. [This Is Unnatural]
Let N be the standard model of the natural numbers. In tutorial exercise 10.4, we proved
that any countable axiomatisation T of N (i.e. Cn(T ) = Th(N )) over some signature Σ
admits another, non-isomorphic model N ′ (in particular, Cn(T ) = Th(N ′)).

Prove that N ′ contains not only one, but infinitely many non-standard natural numbers
dn ∈ UN

′
, i.e. N ′[dn/x] |= x 6= m for all n,m ∈ N and N ′[dn/x, dm/y] |= x 6= y for all

n,m ∈ N with n 6= m.

Solution:
First note that Th(N ) = Cn(T ) = Th(N ′). Thus, N |= S ⇐⇒ N ′ |= S for any
Σ-sentence S.

Now consider dn := (c + n)N
′

for any n ∈ N. We show that N ′ |= c + n 6= m for any m ∈ N.
We have N |= ∀k.(k+n = m→ k = m−n). Hence N ′ |= ∀k.(k+n = m→ k = m−n), and
thus N ′ |= c+ n = m→ c = m− n. For the sake of contradiction, assume N ′ |= c+ n = m.
Then by the previous, N ′ |= c = m− n. But also N ′ |= c 6= k for all k ∈ N by construction
of N ′, contradiction.

It remains to prove thatN ′ |= c+n 6= c+m for n 6= m. SinceN |= ∀k. (k + n 6= k + m↔ n 6= m)
and n 6= m by assumption, we get N ′ |= c + n 6= c + m.

Exercise 11.2. [Decidability of Complete Theories]
Assume S is finitely axiomatizable and complete, i.e. F ∈ S or ¬F ∈ S for any sentence F .

1. Given only the axiomatization of S, give a procedure deciding whether S |= F for any
sentence F .

2. Can you obtain a similar result when the assumption is that the axiom system is only
recursively enumerable?

Solution:

1. Let M be the set of axioms. Run resolution on M ∧ F and M ∧ ¬F in parallel. If
F 6∈ S, then M∧F ` � and the first resolution terminates. If F ∈ S, then M∧¬F ` �
and the second resolution terminates.

2. Yes, by compactness. Enumerate all finite subsets of the axiom set and execute the
resolution calls in a dovetailing approach.
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Exercise 11.3. [One Finite, All Finite]
Show that if a theory is finitely axiomatizable, any countable axiomatization of it has a
finite subset that axiomatizes the same theory. In other words, if Cn(Γ) = Cn(∆) with Γ
countable and ∆ finite, then there is a finite Γ′ ⊆ Γ with Cn(Γ′) = Cn(Γ). Can you also
obtain Γ′ effectively?

Solution:
Let us identify ∆ as the formula

∧
F∈∆ F . It suffices to find a finite subset Γ′ ⊆ Γ that

axiomatizes Cn(∆). For this, it is sufficient to find Γ′ ⊆ Γ such that Γ′ |= ∆, which is
equivalent to Γ′ ∪ {¬∆} being unsatisfiable.

We know that Γ ∪ {¬∆} is unsatisfiable because Γ axiomatizes Cn(∆). By compactness,
there must be a finite subset that is unsatisfiable. We can find this subset by enumerating
all finite subsets Γ′ ⊆ Γ and running resolution on Γ′,¬∆.

Exercise 11.4. [Natural Deduction]
Prove the following formula using natural deduction.

¬(∀x(∃y(¬P (x) ∧ P (y))))

Solution:

∀E [∀x∃y(¬P (x) ∧ P (y))]

∃y(¬P (x1) ∧ P (y))

[¬P (x1) ∧ P (y1)]

P (y1)
∧E2

∀E [∀x∃y(¬P (x) ∧ P (y))]

∃y(¬P (y1) ∧ P (y))

[¬P (y1) ∧ P (y2)]

¬P (y1)
∧E1

¬P (y1)
∃E

⊥
¬E

⊥
∃E

¬(∀x(∃y(¬P (x) ∧ P (y))))
¬I
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Homework 11.1. [Counterexamples from Sequent Calculus] (++)
Consider the statement ∀x(P (x)→ ¬P (f(x))).

1. What happens when trying to prove the validity of this formula in sequent calculus?

2. How can we derive a countermodel from the proof tree?

3. Is there a smaller countermodel?

Solution:
The proof tree gets stuck:

P (y), P (f(y))⇒
P (y)⇒ ¬P (f(y))

¬R

⇒ P (y)→ ¬P (f(y))
→ R

⇒ ∀x (P (x)→ ¬P (f(x)))
∀R

As in the lecture, we can create a countermodel A: Let UA be the set of all terms over y, f(·),
set yA := y, fA(t) := f(tA), and PA := {y, f(y)}. Then A |= P (y) and A |= P (f(y)) and
hence A 6|= ∀x (P (x) → ¬P (f(x))). Note that A is infinite, but there are countermodels
with just two elements {a, b}: Set f(a) := b, f(b) := b, P (a) and P (b). Then P (a) and
P (f(a)) = P (b).

Homework 11.2. [Natural Deduction] (++)
Prove the following statements using natural deduction.

1. ¬∀x∃y∀z(¬P (x, z) ∧ P (z, y))

2. ∃x(P (x)→ ∀xP (x))

Solution:
Here’s an outline for the second task. You can ask for further hints on Zulip.

excl. middle
Exercise(EX)

∀xP (x) ∨ ¬∀xP (x)

[∀xP (x)]1

P (x0)→ ∀xP (x)
→ I

∃x(P (x)→ ∀xP (x))
∃I

[¬∀xP (x)]1
...

∃x.¬P (x)
(EX)

[P (x0)]3 [¬P (x0)]2

⊥
¬E

∀xP (x)
⊥

P (x0)→ ∀xP (x)
(→ I)3

∃x(P (x)→ ∀xP (x))
∃I

∃x(P (x)→ ∀xP (x))
(∃E)2

∃x(P (x)→ ∀xP (x))
(∨E)1
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Homework 11.3. [Closure Operator] (+)
Show that Cn is a closure operator, i.e. Cn fulfills the following properties:

• S ⊆ Cn(S)

• if S ⊆ S ′ then Cn(S) ⊆ Cn(S ′)

• Cn(Cn(S)) = Cn(S)

Solution:
In the following, suppose S, S ′ are sets of Σ-sentences and F is a Σ-sentence.

• F ∈ S =⇒ S |= F =⇒ F ∈ Cn(S)

• F ∈ Cn(S) =⇒ S |= F =⇒ S ′ |= F =⇒ F ∈ Cn(S ′)

• From the first property, we get Cn(S) ⊆ Cn(Cn(S)). For the other direction, we have
F ∈ Cn(Cn(S)) =⇒ Cn(S) |= F =⇒(∗) S |= F =⇒ F ∈ Cn(S).
We have (*) because A |= Cn(S) iff A |= S by definition of Cn.

Homework 11.4. [Elementary Classes] (++)
In this exercise, we assume that all structures and formulas share the same signature Σ.

We define the operator Mod(S) that returns the class of all structures that model a set of
formulas S. In other words, Mod(S) contains all A such that A |= S.

A class of models M is said to be elementary if there is a set of formulas S such that
M = Mod(S). If S is just a singleton set, i.e. there is a formula F such that S = {F}, then
M is basic elementary.

Prove:

1. A class of models M is basic elementary if and only if there is a finite set of formulas
S such that M = Mod(S).

2. If M is basic elementary and M = Mod(S) for countable S, then there is a finite subset
S ′ ⊆ S such that M = Mod(S ′).

Solution:
For the first task, simply take F :=

∧
G∈S G.

For the second task, it suffices to show that Mod(S) = Mod(S ′) ⇐⇒ Cn(S) = Cn(S ′).
The result then follows from tutorial exercise 11.3. Here’s the direction from left to right:

F ∈ Cn(S) ⇐⇒ M |= F for any model M of S

⇐⇒ M |= F for any M∈Mod(S)

⇐⇒ M |= F for any M∈Mod(S ′)

⇐⇒ M |= F for any model M of S ′

⇐⇒ F ∈ Cn(S ′)

The other direction is similar.

The logic of the world is prior to all truth and falsehood.

https://en.wikipedia.org/wiki/Closure_operator
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— Ludwig Wittgenstein1

1Yes, Ludwig strikes again – he just dropped too many great quotes.


