LOGIC EXERCISES

TECHNICAL UNIVERSITY OF MUNICH CHAIR FOR LOGIC AND VERIFICATION

Prof. Tobias Nipkow Kevin Kappelmann

SS 2022

Exercise Sheet 11

08.07.2022

Exercise 11.1. [This Is Unnatural]

Let \mathcal{N} be the standard model of the natural numbers. In tutorial exercise 10.4, we proved that any countable axiomatisation T of \mathcal{N} (i.e. $Cn(T) = Th(\mathcal{N})$) over some signature Σ admits another, non-isomorphic model \mathcal{N}' (in particular, $Cn(T) = Th(\mathcal{N}')$).

Prove that \mathcal{N}' contains not only one, but infinitely many non-standard natural numbers $d_n \in U^{\mathcal{N}'}$, i.e. $\mathcal{N}'[d_n/x] \models x \neq m$ for all $n, m \in \mathbb{N}$ and $\mathcal{N}'[d_n/x, d_m/y] \models x \neq y$ for all $n, m \in \mathbb{N}$ with $n \neq m$.

Solution:

First note that $Th(\mathcal{N}) = Cn(T) = Th(\mathcal{N}')$. Thus, $\mathcal{N} \models S \iff \mathcal{N}' \models S$ for any Σ -sentence S.

Now consider $d_n := (c+n)^{\mathcal{N}'}$ for any $n \in \mathbb{N}$. We show that $\mathcal{N}' \models c+n \neq m$ for any $m \in \mathbb{N}$. We have $\mathcal{N} \models \forall k.(k+n=m \to k=m-n)$. Hence $\mathcal{N}' \models \forall k.(k+n=m \to k=m-n)$, and thus $\mathcal{N}' \models c+n=m \to c=m-n$. For the sake of contradiction, assume $\mathcal{N}' \models c+n=m$. Then by the previous, $\mathcal{N}' \models c=m-n$. But also $\mathcal{N}' \models c \neq k$ for all $k \in \mathbb{N}$ by construction of \mathcal{N}' , contradiction.

It remains to prove that $\mathcal{N}' \models c+n \neq c+m$ for $n \neq m$. Since $\mathcal{N} \models \forall k$. $(k+n \neq k+m \leftrightarrow n \neq m)$ and $n \neq m$ by assumption, we get $\mathcal{N}' \models c+n \neq c+m$.

Exercise 11.2. [Decidability of Complete Theories]

Assume S is finitely axiomatizable and complete, i.e. $F \in S$ or $\neg F \in S$ for any sentence F.

- 1. Given only the axiomatization of S, give a procedure deciding whether $S \models F$ for any sentence F.
- 2. Can you obtain a similar result when the assumption is that the axiom system is only *recursively enumerable*?

Solution:

- 1. Let M be the set of axioms. Run resolution on $M \wedge F$ and $M \wedge \neg F$ in parallel. If $F \notin S$, then $M \wedge F \vdash \Box$ and the first resolution terminates. If $F \in S$, then $M \wedge \neg F \vdash \Box$ and the second resolution terminates.
- 2. Yes, by compactness. Enumerate all finite subsets of the axiom set and execute the resolution calls in a dovetailing approach.

Exercise 11.3. [One Finite, All Finite]

Show that if a theory is finitely axiomatizable, any countable axiomatization of it has a finite subset that axiomatizes the same theory. In other words, if $Cn(\Gamma) = Cn(\Delta)$ with Γ countable and Δ finite, then there is a finite $\Gamma' \subseteq \Gamma$ with $Cn(\Gamma') = Cn(\Gamma)$. Can you also obtain Γ' effectively?

Solution:

Let us identify Δ as the formula $\bigwedge_{F \in \Delta} F$. It suffices to find a finite subset $\Gamma' \subseteq \Gamma$ that axiomatizes $Cn(\Delta)$. For this, it is sufficient to find $\Gamma' \subseteq \Gamma$ such that $\Gamma' \models \Delta$, which is equivalent to $\Gamma' \cup \{\neg\Delta\}$ being unsatisfiable.

We know that $\Gamma \cup \{\neg \Delta\}$ is unsatisfiable because Γ axiomatizes $Cn(\Delta)$. By compactness, there must be a finite subset that is unsatisfiable. We can find this subset by enumerating all finite subsets $\Gamma' \subseteq \Gamma$ and running resolution on $\Gamma', \neg \Delta$.

Exercise 11.4. [Natural Deduction]

Prove the following formula using natural deduction.

$$\neg(\forall x(\exists y(\neg P(x) \land P(y))))$$

Solution:

Homework 11.1. [Counterexamples from Sequent Calculus] (++)Consider the statement $\forall x(P(x) \rightarrow \neg P(f(x)))$.

- 1. What happens when trying to prove the validity of this formula in sequent calculus?
- 2. How can we derive a countermodel from the proof tree?
- 3. Is there a smaller countermodel?

Solution:

The proof tree gets stuck:

$$\begin{split} & \frac{P(y), P(f(y)) \Rightarrow}{P(y) \Rightarrow \neg P(f(y))} \neg R \\ & \frac{P(y) \Rightarrow \neg P(f(y))}{\Rightarrow P(y) \Rightarrow \neg P(f(y))} \rightarrow R \\ & \frac{P(y) \Rightarrow \nabla P(f(y))}{\Rightarrow \forall x \left(P(x) \Rightarrow \neg P(f(x)) \right)} \forall R \end{split}$$

As in the lecture, we can create a countermodel \mathcal{A} : Let $U_{\mathcal{A}}$ be the set of all terms over $y, f(\cdot)$, set $y^{\mathcal{A}} \coloneqq y, f^{\mathcal{A}}(t) \coloneqq f(t^{\mathcal{A}})$, and $P^{\mathcal{A}} \coloneqq \{y, f(y)\}$. Then $\mathcal{A} \models P(y)$ and $\mathcal{A} \models P(f(y))$ and hence $\mathcal{A} \not\models \forall x (P(x) \to \neg P(f(x)))$. Note that \mathcal{A} is infinite, but there are countermodels with just two elements $\{a, b\}$: Set $f(a) \coloneqq b, f(b) \coloneqq b, P(a)$ and P(b). Then P(a) and P(f(a)) = P(b).

Homework 11.2. [Natural Deduction]

$$(++)$$

Prove the following statements using natural deduction.

1.
$$\neg \forall x \exists y \forall z (\neg P(x, z) \land P(z, y))$$

2.
$$\exists x(P(x) \to \forall xP(x))$$

Solution:

Here's an outline for the second task. You can ask for further hints on Zulip.

$$\text{EXCL. MIDDLE} \underbrace{\frac{Exercise(EX)}{\forall xP(x) \lor \neg \forall xP(x)} \xrightarrow{\left[\forall xP(x) \right]_{1}}{\exists x(P(x) \rightarrow \forall xP(x))} \rightarrow I}_{\exists x(P(x) \rightarrow \forall xP(x))} \underbrace{\frac{\left[\forall xP(x) \right]_{1}}{\exists x \neg P(x)} \rightarrow I}_{\exists x(P(x) \rightarrow \forall xP(x))} \underbrace{\frac{\left[\forall xP(x) \right]_{1}}{\exists x \neg P(x)} \xrightarrow{\left[(\text{EX}) \right]_{1}} \frac{\left[\neg \forall xP(x) \right]_{2}}{P(x_{0}) \rightarrow \forall xP(x)} \xrightarrow{\left[(\rightarrow I)_{3} \right]_{3}}{\exists I} \\ \underbrace{\frac{\exists x \neg P(x)}{\exists x(P(x) \rightarrow \forall xP(x))} \xrightarrow{\left[(\text{EX}) \right]_{1}} \underbrace{\frac{\exists x \neg P(x)}{\exists x(P(x) \rightarrow \forall xP(x))} \xrightarrow{\left[(\Rightarrow Exercise(x) \right]_{1}}{\exists I} \xrightarrow{\left[(\Rightarrow Exercise(x) \right]_{1}} \xrightarrow{\left[$$

Homework 11.3. [Closure Operator]

Show that Cn is a closure operator, i.e. Cn fulfills the following properties:

- $S \subseteq Cn(S)$
- if $S \subseteq S'$ then $Cn(S) \subseteq Cn(S')$
- Cn(Cn(S)) = Cn(S)

Solution:

In the following, suppose S, S' are sets of Σ -sentences and F is a Σ -sentence.

- $F \in S \Longrightarrow S \models F \Longrightarrow F \in Cn(S)$
- $F \in Cn(S) \Longrightarrow S \models F \Longrightarrow S' \models F \Longrightarrow F \in Cn(S')$
- From the first property, we get $Cn(S) \subseteq Cn(Cn(S))$. For the other direction, we have $F \in Cn(Cn(S)) \Longrightarrow Cn(S) \models F \Longrightarrow^{(*)} S \models F \Longrightarrow F \in Cn(S)$. We have (*) because $\mathcal{A} \models Cn(S)$ iff $\mathcal{A} \models S$ by definition of Cn.

Homework 11.4. [Elementary Classes]

In this exercise, we assume that all structures and formulas share the same signature Σ .

We define the operator Mod(S) that returns the class of all structures that model a set of formulas S. In other words, Mod(S) contains all \mathcal{A} such that $\mathcal{A} \models S$.

A class of models M is said to be *elementary* if there is a set of formulas S such that M = Mod(S). If S is just a singleton set, i.e. there is a formula F such that $S = \{F\}$, then M is *basic elementary*.

Prove:

- 1. A class of models M is basic elementary if and only if there is a *finite* set of formulas S such that M = Mod(S).
- 2. If M is basic elementary and M = Mod(S) for countable S, then there is a finite subset $S' \subseteq S$ such that M = Mod(S').

Solution:

For the first task, simply take $F \coloneqq \bigwedge_{G \in S} G$.

For the second task, it suffices to show that $Mod(S) = Mod(S') \iff Cn(S) = Cn(S')$. The result then follows from tutorial exercise 11.3. Here's the direction from left to right:

$$F \in Cn(S) \iff \mathcal{M} \models F \text{ for any model } \mathcal{M} \text{ of } S$$
$$\iff \mathcal{M} \models F \text{ for any } \mathcal{M} \in Mod(S)$$
$$\iff \mathcal{M} \models F \text{ for any } \mathcal{M} \in Mod(S')$$
$$\iff \mathcal{M} \models F \text{ for any model } \mathcal{M} \text{ of } S'$$
$$\iff F \in Cn(S')$$

The other direction is similar.

The logic of the world is prior to all truth and falsehood.

(++)

— Ludwig Wittgenstein¹

¹Yes, Ludwig strikes again – he just dropped too many great quotes.