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Exercise 12.1. [ Loś–Vaught Test]
Given a theory T , one often wants to know whether T is complete, i.e. T contains either F
or ¬F for any sentence F . In the lecture, you proved that a theory T is complete iff all its
models are elementarily equivalent. However, checking whether all models of a theory are
elementarily equivalent is usually rather difficult. The  Loś–Vaught test provides an improved
version of this theorem:

Let T be a Σ-theory with no finite models. Let κ ≥ |Σ| be a cardinal. Show that if all
models of size κ for T are elementarily equivalent, then T is complete.

You can assume the following without a proof:

Theorem 1 (Generalised Löwenheim-Skolem Theorems). Let S be a set of formulas in a
language of cardinality λ, and assume that S has some infinite model. Then for every infinite
cardinal κ ≥ λ, there is a model of cardinality κ for S.

Solution:
Prove by contraposition. Assume T is not complete. Hence there is a sentence F such that
T 6|= F and T 6|= ¬F . Thus T ∪ {F} and T ∪ {¬F} are both satisfiable. Hence there are
M |= T ∪ {F} and M′ |= T ∪ {¬F}. As both are models of T , we know that both models
are infinite by assumption.

Now by Löwenheim-Skolem, there are Mκ |= T ∪ {F} and M′
κ |= T ∪ {¬F} of cardinality

κ. Thus, not all models of size κ of T are elementarily equivalent.
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Exercise 12.2. [QE for DLO]
Use the quantifier-elimination procedure for DLOs to check whether the following formula
is a member of Th(DLO):

∃x∀y∃z((x < y ∨ z < x) ∧ y < z)

Use ⇐⇒ if two formulas are logically equivalent and ⇐⇒DLO if the equivalence requires the
DLO axioms.

Solution:
∃x∀y∃z((x < y ∨ z < x) ∧ y < z)

⇐⇒ ∃x∀y∃z((x < y ∧ y < z) ∨ (z < x ∧ y < z))

⇐⇒ ∃x∀y(∃z(x < y ∧ y < z) ∨ ∃z(z < x ∧ y < z))

⇐⇒ ∃x∀y((x < y ∧ ∃z(y < z)) ∨ ∃z(z < x ∧ y < z))

⇐⇒DLO ∃x∀y((x < y ∧ >) ∨ ∃z(z < x ∧ y < z))

⇐⇒DLO ∃x∀y(x < y ∨ y < x)

⇐⇒ ∃x¬∃y¬(x < y ∨ y < x)

⇐⇒DLO ∃x¬∃y((y < x ∨ x = y) ∧ (x < y ∨ x = y))

⇐⇒ ∃x¬∃y((y < x ∧ x < y) ∨ (y < x ∧ x = y) ∨ (x = y ∧ x < y) ∨ (x = y))

⇐⇒ ∃x¬(∃y(y < x ∧ x < y) ∨ ∃y(y < x ∧ x = y) ∨ ∃y(x = y ∧ x < y) ∨ ∃y(x = y))

⇐⇒DLO ∃x¬(x < x ∨ x < x ∨ x < x ∨ >)

⇐⇒DLO ∃x((x = x ∨ x < x) ∧ (x = x ∨ x < x) ∧ (x = x ∨ x < x) ∧ ⊥)

⇐⇒ ∃x((x = x ∧ ⊥) ∨ (x = x ∧ x < x ∧ ⊥) ∨ (x < x ∧ ⊥))

⇐⇒ (∃x(x = x) ∧ ⊥) ∨ (∃x(x = x ∧ x < x) ∧ ⊥) ∨ (∃x(x < x) ∧ ⊥)

⇐⇒DLO (> ∧⊥) ∨ (⊥ ∧⊥) ∨ (⊥ ∧⊥)

⇐⇒ ⊥ (optional step; not part of QEP)
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Exercise 12.3. [Fourier–Motzkin Elimination]
Apply the Fourier–Motzkin Elimination to check the following sentences:

1. ∃x∃y(2 · x+ 3 · y = 7 ∧ x < y ∧ 0 < x)

2. ∃x∃y(3 · x+ 3 · y < 8 ∧ 8 < 3 · x+ 2 · y)

Use ⇐⇒ if two formulas are logically equivalent and ⇐⇒R+ if the equivalence requires the
theory R+.

Solution:
∃x∃y(2 · x+ 3 · y = 7 ∧ x < y ∧ 0 < x)

⇐⇒ ∃x (∃y (2 · x+ 3 · y = 7 ∧ x < y) ∧ 0 < x)

⇐⇒R+ ∃x
(
∃y

(
y =

7

3
− 2

3
· x ∧ x < y

)
∧ 0 < x

)
⇐⇒R+ ∃x

(
x <

7

3
− 2

3
· x ∧ 0 < x

)
⇐⇒R+ ∃x

(
x <

7

5
∧ 0 < x

)
⇐⇒R+ 0 <

7

5
⇐⇒R+ > (optional step; not part of QEP)

∃x∃y(3 · x+ 3 · y < 8 ∧ 8 < 3 · x+ 2 · y)

⇐⇒R+ ∃x∃y
(
y <

8

3
− x ∧ 4− 3

2
· x < y

)
⇐⇒R+ ∃x

(
4− 3

2
· x < 8

3
− x

)
⇐⇒R+ ∃x

(
8

3
< x

)
⇐⇒R+ >
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Homework 12.1. [Subtraction Logic] (+++)
We consider a fragment of linear arithmetic, in which atomic formulas only take the form
x− y ≤ c for variables x and y, and c ∈ R.

For a finite set S of such difference constraints, we can define a corresponding inequality
graph G(V,E), where V is the set of variables of S, and E consists of all the edges (x, y)
with weight c for all constraints x− y ≤ c of S. Show that the conjuction of all constraints
from S is satisfiable iff G does not contain a negative cycle.

How can you use this theorem to obtain a procedure for deciding whether a formula is a
member of this fragment where all variables and constants are of the domain Z?

Solution:
First part: see here, slide 4.

Second part: We first replace any x = y by x − y ≤ 0 ∧ y − x ≤ 0. We can replace any
¬(x−y ≤ 0) by x−y > 0 ≡ y−x < 0 ≡ y−x ≤ −1. Note that the final step is only possible
in Z. For R, one would instead have to symbolically compute with a “sufficiently small” δ
instead of −1. We can then use the Bellman-Ford algorithm to detect negative cycles.

Homework 12.2. [Min, Max, Abs] (++)

1. Show that Th(R, 0, 1, <,=,+,min,max) is decidable, where min and max return the
minimum and maximum of two values.

2. Show that Th(R, 0, 1, <,=,+,min,max, | · |) is decidable, where | · | is the absolute
value.

Solution:

1. Extend Fourier-Motzkin by new steps before applying qe1ca to ∃x(A1 ∧ · · · ∧ An) ≡:
∃xF :

(a) If there is some term min(t1, t2) in F , then replace the formula by

∃x((t1 < t2 → F [t1/min(t1, t2)]) ∧ (t2 < t1 ∨ t2 = t1 → F [t2/min(t1, t2)]))

where by abuse of notation, F [t1/min(t1, t2)] is the formula obtained by replacing
all occurences of min(t1, t2) by t1. Then renormalise the formula and repeat.

(b) If there is some term max(t1, t2) in F , then replace the formula by

∃x((t1 < t2 → F [t2/max(t1, t2)]) ∧ (t2 < t1 ∨ t2 = t1 → F [t1/max(t1, t2)]))

Then renormalise the formula and repeat.
As a result, we reduced the theory to the theory of linear real arithmetic, which is
decidable.

1. Similar to the previous exercise with an additional step: If there is some term c · |t| in
F , then replace the formula by

∃x((0 < t ∨ 0 = t→ F [t/|t|]) ∨ (t < 0→ F [(−c) · t/c · |t|]))

Then renormalise the formula and repeat.

https://www.cs.upc.edu/~oliveras/TDV/dl.pdf
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Homework 12.3. [Optimising DLO] (++)
DLO suffers from a heavy performance loss because after each step, a DNF needs to be
reconstructed. We want to study an optimisation that may avoid this under some circum-
stances.

Assume that we want to eliminate an ∃xF where

• F contains no negations and quantifiers,

• F contains no ⊥, and

• all bounds in F are lower bounds for x or all bounds in F are upper bounds for x.

Then, ∃xF ≡ >. Prove the correctness of this optimisation.

Solution:
WLOG assume that F only contains upper bounds (the other case is analagous). Let ~y be
the free variables of ∃F . We proof by induction on F that there is a witness w for any
instantiation F [~u/~y] such that F [~u/~y][t/x] ≡ > for any t ≤ w.

Case >: any w does the job.

Case x < z: For any instantiation u of z, we can obtain by the axioms of DLO some t such
that t < z. We set w := t.

Case F1 ∨ F2: then by induction F1[~u/~y][t/x] ≡ > for some w1 and all t ≤ w1 and hence
F1[~u/~y][t/x] ∨ F2[~u/~y][t/x] ≡ > ∨ F2[~u/~y][t/x] ≡ >

Case F1 ∧ F2: then by induction Fi[~u/~y][ti/x] ≡ > for some wi and all ti ≤ wi. Set w := w1

if w1 < w2 and w := w2 otherwise. Then F1[~u/~y][t/x] ∧ F2[~u/~y][t/x] ≡ > ∧ > ≡ > for
all t ≤ w.

all other cases: excluded by assumption.

In order to attain the impossible, one must attempt the absurd.
— Miguel de Cervantes

https://de.wikipedia.org/wiki/Miguel_de_Cervantes

