
First-Order Predicate Logic

Basics

1

Syntax of predicate logic: terms

A variable is a symbol of the form xi where i = 1, 2, 3

A function symbol is of the form f ki where i = 1, 2, 3 . . . and
k = 0, 1, 2

A predicate symbol is of the form Pk
i where i = 1, 2, 3 . . . and

k = 0, 1, 2

We call i the index and k the arity of the symbol.

Terms are inductively defined as follows:

1. Variables are terms.

2. If f is a function symbol of arity k and t1, . . . , tk are terms
then f (t1, . . . , tk) is a term.

Function symbols of arity 0 are called constant symbols.
Instead of f 0i () we write f 0i .

2

Syntax of predicate logic: formulas

If P is a predicate symbol of arity k and t1, . . . , tk are terms then
P(t1, . . . , tk) is an atomic formula.
If k = 0 we write P instead of P().

Formulas (of predicate logic) are inductively defined as follows:

I Every atomic formula is a formula.

I If F is a formula, then ¬F is also a formula.

I If F and G are formulas,
then F ∧ G , F ∨ G and F → G are also formulas.

I If x is a variable and F is a formula,
then ∀x F and ∃x F are also formulas.
The symbols ∀ and ∃ are called the universal and the
existential quantifier.

3

Syntax trees and subformulas

Syntax trees are defined as before,
extended with the following trees for ∀xF and ∃xF :

∀x ∃x
| |
F F

Subformulas again correspond to subtrees.

4

Sructural induction of formulas

Like for propositional logic but

I Different base case: P(P(t1, . . . , tk))

I Two new induction steps:
prove P(∀x F) under the induction hypothesis P(F)
prove P(∃x F) under the induction hypothesis P(F)

5

Naming conventions

x , y , z , . . . instead of x1, x2, x3, . . .
a, b, c , . . . for constant symbols
f , g , h, . . . for function symbols of arity > 0
P,Q,R, . . . instead of Pk

i

6

Precedence of quantifiers

Quantifiers have the same precedence as ¬

Example

∀x P(x) ∧ Q(x) abbreviates (∀x P(x)) ∧ Q(x)
not ∀x (P(x) ∧ Q(x))

Similarly for ∨ etc.

[This convention is not universal]

7

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic
subformula of F .

An occurrence of a variable in a formula is either free or bound.

An occurrence of x in F is bound if it occurs in some subformula
of F of the form ∃xG or ∀xG ; the smallest such subformula is the
scope of the occurrence. Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

∀x P(x)→ ∃y Q(a, x , y)

8

Exercise

Closed?

∀x P(a)

Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x)→ ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x)→ ∃x Q(x , f (x)) N

Formula?

∃x P(f (x))

Y

∃f P(f (x))

N

9

Semantics of predicate logic: structures

A structure is a pair A = (UA, IA)
where UA is an arbitrary, nonempty set called the universe of A,
and the interpretation IA is a partial function that maps

I variables to elements of the universe UA,

I function symbols of arity k to functions of type Uk
A → UA,

I predicate symbols of arity k to functions of type Uk
A → {0, 1}

(predicates) [or equivalently to subsets of Uk
A (relations)]

IA maps syntax (variables, functions and predicate symbols)
to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

I constant symbols are mapped to elements of UA,

I predicate symbols of arity 0 are mapped to {0, 1}.

10

Abbreviations:

xA abbreviates IA(x)
f A abbreviates IA(f)
PA abbreviates IA(P)

Example

UA = N
IA(P) = PA = {(m, n) | m, n ∈ N and m < n}
IA(Q) = QA = {m | m ∈ N and m is prime}
IA(f) is the successor function: f A(n) = n + 1
IA(g) is the addition function: gA(m, n) = m + n
IA(a) = aA = 2

IA(z) = zA = 3

Intuition: is ∀x P(x , f (x)) ∧ Q(g(a, z)) true in this structure?

11

Evaluation of a term in a structure

Definition
Let t be a term and let A = (UA, IA) be a structure.
A is suitable for t if IA is defined for all variables and function
symbols occurring in t.

The value of a term t in a suitable structure A, denoted by A(t),
is defined recursively:

A(x) = xA

A(c) = cA

A(f (t1, . . . , tk)) = f A(A(t1), . . . ,A(tk))

Example

A(f (g(a, z))) =

12

Definition
Let F be a formula and let A = (UA, IA) be a structure.
A is suitable for F if IA is defined for all predicate and function
symbols occurring in F and for all variables occurring free in F .

13

Evaluation of a formula in a structure

Let A be suitable for F . The (truth)value of F in A, denoted by
A(F), is defined recursively:

A(¬F), A(F ∧ G), A(F ∨ G), A(F → G)
as for propositional logic

A(P(t1, . . . , tk)) =

{
1 if (A(t1), . . . ,A(tk)) ∈ PA

0 otherwise

A(∀x F) =

{
1 if for every d ∈ UA, (A[d/x])(F) = 1
0 otherwise

A(∃x F) =

{
1 if for some d ∈ UA, (A[d/x])(F) = 1
0 otherwise

A[d/x] coincides with A everywhere except that xA[d/x] = d .

14

Example

A(∀x P(x , f (x)) ∧ Q(g(a, z))) =

15

Notes

I During the evaluation of a formulas in a structure,
the structure stays unchanged
except for the interpretation of the variables.

I If the formula is closed,
the initial interpretation of the variables is irrelevant.

16

Coincidence Lemma

Lemma
Let A and A′ be two structures that coincide on all free variables,
on all function symbols and all predicate symbols that occur in F .
Then A(F) = A′(F).

Proof.
Exercise.

17

Relation to propositional logic

I Every propositional formula can be seen as a formula of
predicate logic where the atom Ai is replaced by the atom P0

i .

I Conversely, every formula of predicate logic
that does not contain quantifiers and variables
can be seen as a formula of propositional logic
by replacing atomic formulas by propositional atoms.

Example
F = (Q(a) ∨ ¬P(f (b), b) ∧ P(b, f (b)))
can be viewed as the propositional formula
F ′ = (A1 ∨ ¬A2 ∧ A3).

Exercise
F is satifiable/valid iff F ′ is satisfiable/valid

18

Predicate logic with equality

Predicate logic
+

distinguished predicate symbol “=” of arity 2

Semantics: A structure A of predicate logic with equality always
maps the predicate symbol = to the identity relation:

A(=) = {(d , d) | d ∈ UA}

19

Model, validity, satisfiability
Like in propositional logic

Definition
We write A |= F to denote that the structure A is suitable for the
formula F and that A(F) = 1.
Then we say that F is true in A or that A is a model of F .

If every structure suitable for F is a model of F ,
then we write |= F and say that F is valid.

If F has at least one model then we say that F is satisfiable.

20

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a)

x

∃x (¬P(x) ∨ P(a))

x

P(a)→ ∃x P(x)

x

P(x)→ ∃x P(x)

x

∀x P(x)→ ∃x P(x)

x

∀x P(x) ∧ ¬∀y P(y)

x

21

Consequence and equivalence
Like in propositional logic

Definition
A formula G is a consequence of a set of formulas M
if every structure that is a model of all F ∈ M and suitable for G
is also a model of G . Then we write M |= G .

Two formulas F and G are (semantically) equivalent
if every structure A suitable for both F and G satisfies
A(F) = A(G). Then we write F ≡ G .

22

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2

x

2 |= 3

x

3 |= 1

x

23

Exercise

1. ∃y∀x P(x , y)

2. ∀x∃y P(x , y)

Y N

1 |= 2

x

2 |= 1

x

24

Exercise

Y N

∀x∀y F ≡ ∀y∀x F

x

∀x∃y F ≡ ∃x∀y F

x

∃x∃y F ≡ ∃y∃x F

x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G)

x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G)

x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G)

x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G)

x

25

Equivalences

Theorem

1. ¬∀xF ≡ ∃x¬F
¬∃xF ≡ ∀x¬F

2. If x does not occur free in G then:
(∀xF ∧ G) ≡ ∀x(F ∧ G)
(∀xF ∨ G) ≡ ∀x(F ∨ G)
(∃xF ∧ G) ≡ ∃x(F ∧ G)
(∃xF ∨ G) ≡ ∃x(F ∨ G)

3. (∀xF ∧ ∀xG) ≡ ∀x(F ∧ G)
(∃xF ∨ ∃xG) ≡ ∃x(F ∨ G)

4. ∀x∀yF ≡ ∀y∀xF
∃x∃yF ≡ ∃y∃xF

26

Replacement theorem

Just like for propositional logic it can be proved:

Theorem
Let F ≡ G. Let H be a formula with an occurrence of F as a
subformula. Then H ≡ H ′, where H ′ is the result of replacing an
arbitrary occurrence of F in H by G.

27

