First-Order Logic
Herbrand Theory



Herbrand universe

The Herbrand universe T(F) of a closed formula F in Skolem form
is the set of all terms that can be constructed using the function
symbols in F.

In the special case that F contains no constants, we first pick an
arbitrary constant, say a, and then construct the terms.

Formally, T(F) is inductively defined as follows:

» All constants occurring in F belong to T(F);
if no constant occurs in F, then a € T(F)
where a is some arbitrary constant.

» For every n-ary function symbol f occurring in F,
if t1,t2,...,th € T(F) then f(t1,t2,...,ty) € T(F).

Note: All terms in T(F) are variable-free by construction!

Example
F =Vxvy P(f(x),5(c,y))



Herbrand structure

Let F be a closed formula in Skolem form.
A structure A suitable for F is a Herbrand structure for F
if it satisfies the following conditions:

» Uy = T(F), and
> for every n-ary function symbol f occurring in F
and every t1,...,t, € T(F): fA(tl, ceytn) =1(t1, .. t).

Fact
If A is a Herbrand structure, then A(t) =t for all t € Uj,.

We call a Herbrand structure that is a model a Herbrand model.



Matrix of a formula

Definition
The matrix of a formula F is the result of removing all quantifiers
(all ¥x and 3x) from F. The matrix is denoted by F*.



Fundamental theorem of predicate logic

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

Proof If F has a Herbrand model then it is satisfiable.

For the other direction let A be an arbitrary model of F.
We define a Herbrand structure 7 as follows:
Universe Ur =T(F)
Function symbols 7 (ty,...,t,) = f(t1,..., ts)
If F contains no constant: a* = u for some arbitrary u € Uy
Predicate symbols  (t1,...,t,) € PT iff (A(t1),...,A(ty)) € PA

Claim: 7T is also a model of F.



Claim: T is also a model of F.

We prove a stronger assertion:
For every closed formula G in Skolem form
that contains the same fun. and pred. symbols as F:

ifAEGthenT EG
Proof By induction on the number n of universal quantifiers of G.

Basis n = 0. Then G has no quantifiers at all.
Therefore A(G) = T(G) (why?), and we are done.



Induction step: G =Vx H.

4y
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AEG
for every u € Uy: Alu/x](H) =1
for every u € U4 of the form u = A(t)

where t € T(F): Alu/x](H) =1
for every t € T(F): A[A(t)/x](H) =
forevery t € T(F): A(H[t/x]) =1 (substitution lemma)
for every t € T(F): T(H[t/x]) =1 (induction hypothesis)
for every t € T(F): T[T (t)/x](H) =1 (substitution lemma)
for every t € T(F): T[t/x](H) =1 (7 is Herbrand structure)
T(vx H) = (Ur = T(F))
TEG



Theorem

Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?



Herbrand expansion

Let F =Vy;...Vy,F* be a closed formula in Skolem form.
The Herbrand expansion of F is the set of formulas

E(F) ={F'lta/na]...[ta/yn] | t1, ..., tn € T(F)}
Informally: the formulas of E(F) are the result of substituting
terms from T(F) for the variables of F* in every possible way.
Example

E(VxVy P(f(x),g(c,y)) =

Note The Herbrand expansion can be viewed as a set of
propositional formulas.



Godel-Herbrand-Skolem Theorem

Theorem

Let F be a closed formula in Skolem form.

Then F is satisfiable iff its Herbrand expansion E(F) is satisfiable
(in the sense of propositional logic).

Proof By the fundamental theorem, it suffices to show:
F has a Herbrand model iff E(F) is satisfiable.
Let F =Vy;...Vy,F*.

A is a Herbrand model of F
iff forall t1,...,t, € T(F), Alti/y1]---[tn/yn](F*) =1
iff forall t1,...,t, € T(F), A(F*[ti/y1]..-[tn/yn]) =1
iff forall G € E(F), A(G) =1
iff A is a model of E(F)
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Herbrand’s Theorem

Theorem
Let F be a closed formula in Skolem form.
F is unsatisfiable iff some finite subset of E(F) is unsatisfiable.

Proof Follows immediately from the Godel-Herbrand-Skolem
Theorem and the Compactness Theorem.
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Gilmore's Algorithm

Let F be a closed formula in Skolem form
and let Fi, Fp, F3,... be a computable enumeration of E(F).

Input: F

n:=0;

repeat n:=n+1;

until (F1 A F A ... A Fp) is unsatisfiable;
return “unsatisfiable”

The algorithm terminates iff F is unsatisfiable.
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Semi-decidability Theorems

Theorem

(a) The unsatisfiability problem of predicate logic is (only)
semi-decidable.

(b) The validity problem of predicate logic is (only)
semi-decidable.

Proof

(a) Gilmore's algorithm is a semi-decision procedure.
(The problem is undecidable. Proof later)

(b) F valid iff =F unsatisfiable.
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Lowenheim-Skolem Theorem

Theorem
Every satisfiable formula of first-order predicate logic
has a model with a countable universe.

Proof Let Fy be a formula with free variables xq, ..., x,. Define
F := dxq ...dx, Fp and observe that Fy has a model with universe
U iff F has a model with universe U. Let G be an equisatisfiable,
closed formula in Skolem form as produced by the Normal Form
transformations starting with F.

Fact: Every model of G is a model of F. (Check this!)

Fo satisfiable F satisfiable

G satisfiable

G has a Herbrand model T
F also has that model T
Fo has a countable model

(Herbrand universes are countable)

R R
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Lowenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models

Formulas of first-order logic cannot axiomatize the real numbers
because there will always be countable models
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