Natural Deduction Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Natural deduction (Gentzen 1935) aims at natural proofs It formalizes good mathematical practice

Resolution but also sequent calculus aim at proof search

Main principles

1. For every logical operator \oplus there are two kinds of rules: Introduction rules: How to prove $F \oplus G$

$$
\frac{\cdots}{F \oplus G}
$$

Elimination rules What can be proved from $F \oplus G$

$$
\underset{F \oplus G}{\ldots} \ldots
$$

Examples

$$
\frac{A B}{A \wedge B} \wedge I \quad \frac{F \wedge G}{F} \wedge E_{1} \quad \frac{F \wedge G}{G} \wedge E_{2}
$$

Main principles

2. Proof can contain subproofs with local/closed assumptions

Example

If from the local assumption F we can prove G then we can prove $F \rightarrow G$.

The formal inference rule:

$$
\begin{gathered}
{[F]} \\
\vdots \\
\frac{G}{F \rightarrow G} \rightarrow l
\end{gathered}
$$

A proof tree:

$$
\frac{\frac{[P] Q}{P \wedge Q} \wedge I}{P \rightarrow P \wedge Q} \rightarrow I
$$

Form the (open) assumption Q we can prove $P \rightarrow P \wedge Q$. In symbols: $Q \vdash_{N} P \rightarrow P \wedge Q$

Growing the proof tree

Upwards:

$$
\frac{\frac{[P] Q}{P \wedge Q} \wedge I}{P \rightarrow P \wedge Q} \rightarrow I
$$

Downwards:

$$
\frac{\frac{[P] Q}{P \wedge Q} \wedge I}{P \rightarrow P \wedge Q} \rightarrow I
$$

ND proof trees

The nodes of a ND proof tree are labeled by formulas. Leaf nodes represent assumptions.
The root node is the conclusion.
Assumptions can be open or closed.
Closed assumptions are written [F].

Intuition:

- Open assumptions are used in the proof of the conclusion
- Closed assumptions are local assumptions in a subproof that have been closed (removed) by some proof rule like $\rightarrow I$.

ND proof trees are defined inductively.

- Every F is a ND proof tree (with open assumption F and conclusion F). Reading: From F we can prove F.
- New proof trees are constructed by the rules of ND.

Natural Deduction rules

$$
\begin{aligned}
& \frac{F \quad G}{F \wedge G} \wedge I \\
& \frac{F \wedge G}{F} \wedge E_{1} \quad \frac{F \wedge G}{G} \wedge E_{2} \\
& \text { [F] } \\
& \frac{\dot{\dot{G}}}{F \rightarrow G} \rightarrow I \\
& \frac{F \rightarrow G \quad F}{G} \rightarrow E \\
& \frac{F}{F \vee G} \vee I_{1} \frac{G}{F \vee G} \vee I_{2} \quad \frac{F \vee G \dot{H} \quad \dot{H}}{H} \vee E \\
& \begin{array}{c}
{[\neg F]} \\
\vdots \\
\stackrel{\perp}{F} \perp
\end{array}
\end{aligned}
$$

Natural Deduction rules

Rules for \neg are special cases of rules for \rightarrow :

$$
\begin{aligned}
& {[F]} \\
& \vdots \\
& \frac{\perp}{\neg F} \neg I \quad \frac{\neg F \quad F}{\perp} \neg E
\end{aligned}
$$

Natural Deduction rules

How to read a rule

Forward:
Close all (or some) of the assumptions F in the proof of G when applying rule r

Backward:
In the subproof of G you can use the local assumption $[F]$.
Can use labels to show which rule application closed which assumptions.

Soundness

Definition

$\Gamma \vdash{ }_{N} F$ if there is a proof tree with root F and open assumptions contained in the set of formulas Γ.

Lemma (Soundness)
If $\Gamma \vdash_{N} F$ then $\Gamma \models F$
Proof by induction on the depth of the proof tree for $\Gamma \vdash_{N} F$.
Base case: no rule, $F \in \Gamma$
Step: Case analysis of last rule
Case $\rightarrow E$:
$\mathrm{IH}: \Gamma \models F \rightarrow G \quad \Gamma \models F$
To show: $\Gamma \models G$
Assume $\mathcal{A} \models \Gamma \Rightarrow{ }^{I H} \mathcal{A}(F \rightarrow G)=1$ and $\mathcal{A}(F)=1 \Rightarrow \mathcal{A}(G)=1$

Soundness

Case

$$
\begin{gathered}
{[F]} \\
\vdots \\
\frac{\dot{G}}{F \rightarrow G} \rightarrow I
\end{gathered}
$$

IH: $\Gamma, F \models G$
To show: $\Gamma \vDash F \rightarrow G$ iff for all $\mathcal{A}, \mathcal{A} \models \Gamma \Rightarrow \mathcal{A} \models F \rightarrow G$ iff for all $\mathcal{A}, \mathcal{A} \models \Gamma \Rightarrow(\mathcal{A} \models F \Rightarrow \mathcal{A} \models G)$ iff for all $\mathcal{A}, \mathcal{A} \models \Gamma$ and $\mathcal{A} \models F \Rightarrow \mathcal{A} \models G$ iff IH

Completeness

Towards completeness

ND can simulate truth tables

Lemma (Tertium non datur)
$\vdash_{N} F \vee \neg F$
Corollary (Cases)
If $F, \Gamma \vdash_{N} G$ and $\neg F, \Gamma \vdash_{N} G$ then $\Gamma \vdash_{N} G$.
Definition

$$
F^{\mathcal{A}}:=\left\{\begin{aligned}
F & \text { if } \mathcal{A}(F)=1 \\
\neg F & \text { if } \mathcal{A}(F)=0
\end{aligned}\right.
$$

Towards completeness

Lemma (1)
If atoms $(F) \subseteq\left\{A_{1}, \ldots, A_{n}\right\}$ then $A_{1}^{\mathcal{A}}, \ldots, A_{n}^{\mathcal{A}} \vdash_{N} F^{\mathcal{A}}$
Proof by induction on F
Lemma (2)
If atoms $(F)=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\models F$
then $A_{1}^{\mathcal{A}}, \ldots, A_{k}^{\mathcal{A}} \vdash_{N} F$ for all $k \leq n$
Proof by (downward) induction on $k=n, \ldots, 0$

Completeness

Theorem (Completeness)
If $\Gamma \vDash F$ then $\Gamma \vdash_{N} F$
Proof

Relating

Sequent Calculs and Natural Deduction

Constructive approach to relating proof systems:

- Show how to transform proofs in one system into proofs in another system
- Implicit in inductive (meta) proof

Theorem (ND can simulate SC)
If $\vdash_{G} \Gamma \Rightarrow \Delta$ then $\Gamma, \neg \Delta \vdash_{N} \perp\left(\right.$ where $\left.\neg\left\{F_{1}, \ldots\right\}=\left\{\neg F_{1}, \ldots\right\}\right)$
Proof by induction on (the depth of) $\vdash_{G} \Gamma \Rightarrow \Delta$

Corollary (Completeness of ND)
If $\Gamma \vDash F$ then $\Gamma \vdash_{N} F$
Proof If $\Gamma \vDash F$ then $\Gamma_{0} \models F$ for some finite $\Gamma_{0} \subseteq \Gamma$.

Two completness proofs

- Direct
- By simulating a complete system

Theorem (SC can simulate ND)
If $\Gamma \vdash_{N} F$ and Γ is finite then $\vdash_{G} \Gamma \Rightarrow F$
Proof by induction on $\Gamma \vdash_{N} F$

Corollary
If $\Gamma \vdash_{N} F$ then there is some finite $\Gamma_{0} \subseteq \Gamma$ such that $\vdash_{G} \Gamma_{0} \Rightarrow F$

