Propositional Logic Normal Forms

Abbreviations

Until further notice:
$\begin{array}{rll}F_{1} \rightarrow F_{2} & \text { abbreviates } & \neg F_{1} \vee F_{2} \\ \top & \text { abbreviates } & A_{1} \vee \neg A_{1} \\ \perp & \text { abbreviates } & A_{1} \wedge \neg A_{1}\end{array}$

Literals

Definition
A literal is an atom or the negation of an atom.
In the former case the literal is positive, in the latter case it is negative.

Negation Normal Form (NNF)

Definition

A formula is in negation formal form (NNF)
if negation (\neg) occurs only directly in front of atoms.
Example
In NNF: $\neg A \wedge \neg B$
Not in NNF: $\quad \neg(A \vee B)$

Transformation into NNF

Any formula can be transformed into an equivalent formula in NNF by pushing \neg inwards. Apply the following equivalences from left to right as long as possible:

$$
\begin{aligned}
\neg \neg F & \equiv F \\
\neg(F \wedge G) & \equiv(\neg F \vee \neg G) \\
\neg(F \vee G) & \equiv(\neg F \wedge \neg G)
\end{aligned}
$$

Example

$$
(\neg(A \wedge \neg B) \wedge C) \equiv((\neg A \vee \neg \neg B) \wedge C) \equiv((\neg A \vee B) \wedge C)
$$

Warning: " $F \equiv G \equiv H$ " is merely an abbreviation for

$$
" F \equiv G \text { and } G \equiv H "
$$

Does this process always terminate? Is the result unique?

CNF and DNF

Definition

A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals:

$$
F=\left(\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$

Definition

A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$
F=\left(\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$

Transformation into CNF and DNF

Any formula can be transformed into an equivalent formula in CNF or DNF in two steps:

1. Transform the initial formula into its NNF
2. Transform the NNF into CNF or DNF:

- Transformation into CNF. Apply the following equivalences from left to right as long as possible:

$$
\begin{aligned}
(F \vee(G \wedge H)) & \equiv((F \vee G) \wedge(F \vee H)) \\
((F \wedge G) \vee H) & \equiv((F \vee H) \wedge(G \vee H))
\end{aligned}
$$

- Transformation into DNF. Apply the following equivalences from left to right as long as possible:

$$
\begin{aligned}
(F \wedge(G \vee H)) & \equiv((F \wedge G) \vee(F \wedge H)) \\
((F \vee G) \wedge H) & \equiv((F \wedge H) \vee(G \wedge H))
\end{aligned}
$$

Termination

Why does the transformation into NNF and CNF terminate?
Challenge Question: Find a weight function $w::$ formula $\rightarrow \mathbb{N}$ such that $w($ I.h.s. $)>w(r . h . s$.$) for the equivalences$

$$
\begin{aligned}
\neg \neg F & \equiv F \\
\neg(F \wedge G) & \equiv(\neg F \vee \neg G) \\
\neg(F \vee G) & \equiv(\neg F \wedge \neg G) \\
(F \vee(G \wedge H)) & \equiv((F \vee G) \wedge(F \vee H)) \\
((F \wedge G) \vee H) & \equiv((F \vee H) \wedge(G \vee H))
\end{aligned}
$$

Define w recursively:
$w\left(A_{i}\right)=\ldots$
$w(\neg F)=\ldots w(F) \ldots$
$w(F \wedge G)=\ldots w(F) \ldots w(G) \ldots$
$w(F \vee G)=\ldots w(F) \ldots w(G) \ldots$

Complexity considerations

The CNF and DNF of a formula of size n can have size 2^{n}
Can we do better? Yes, if we do not instist on \equiv.
Definition
Two formulas F and G are equisatisfiable if
F is satisfiable iff G is satisfiable.
Theorem
For every formula F of size n
there is an equisatisfiable CNF formula G of size $O(n)$.

