
Lambda Calculus

Prof. Tobias Nipkow

August 2, 2012

Contents

1 Untyped Lambda Calculus 3
1.1 Syntax . 3

1.1.1 Terms . 3
1.1.2 Currying (Schönfinkeln) . 4
1.1.3 Static binding and substitution . 5
1.1.4 α-conversion . 6

1.2 β-reduction (contraction) . 7
1.2.1 Confluence . 9

1.3 η-reduction . 11
1.4 λ-calculus as an equational theory . 13

1.4.1 β-conversion . 13
1.4.2 η-conversion and extensionality . 14

1.5 Reduction strategies . 14
1.6 Labeled terms . 15
1.7 Lambda calculus as a programming language . 16

1.7.1 Data types . 16
1.7.2 Recursive functions . 18
1.7.3 Computable functions on IN: . 19

2 Typed Lambda Calculi 21
2.1 Simply typed λ-calculus (λ→) . 22

2.1.1 Type checking for explicitly typed terms 22
2.2 Termination of →β . 24
2.3 Type inference for λ→ . 26
2.4 let-polymorphism . 26

3 The Curry-Howard Isomorphismus 29

A Relational Basics 33
A.1 Notation . 33
A.2 Confluence . 33
A.3 Commuting relations . 36

1

2 CONTENTS

Chapter 1

Untyped Lambda Calculus

1.1 Syntax

1.1.1 Terms

Definition 1.1.1 In lambda calculus the set of terms are defined as follows:

t ::= c | x | (t1 t2) | (λx.t)

(t1 t2) is called application and represents the application of a function t1 to an argument t2.

(λx.t) is called abstraction and represents the function with formal parameter x and body t;
x is bound in t.

Convention:

x, y, z variables
c, d, f, g, h constants
a, b atoms = variables ∪ constants
r, s, t, u, v, w terms

In lambda calculus there is one computation rule called β-reduction: ((λx.s) t) can be reduced
to s[t/x], the result of replacing the arguments t for the formal parameter x in s. Examples:

((λx.((f x)x))5) →β ((f 5)5)

((λx.x)(λx.x)) →β (λx.x)

(x(λy.y)) cannot be reduced

The precise definition of s[t/x] needs some work.

Notation:

• Variables are listed after λ: λx1 . . . xn.s ≡ λx1. . . . λxn.s

• Application associates to the left: (t1 . . . tn) ≡ (((t1 t2)t3) . . . tn)

• λ binds to the right as far as possible.

Example: λx.x x ≡ λx.(x x) 6≡ (λx.x) x

• Outermost parentheses are omitted: t1 . . . tn ≡ (t1 . . . tn)

3

4 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Terms as trees:

term:

tree:

c

c

x

x

(λx.t)

λx

t

(t1 t2)

•

�
�

t1
@
@

t2

Example: term to tree (λx.f x) y

•

�
�

λx
@
@

y

•

�
�

f
@
@

x

Definition 1.1.2 Term s is subterm of t, if the tree corresponding to s is a subtree of the
tree corresponding to t. Term s is a proper subterm of t if s is a subterm of t and s 6= t.

Example:

Is s (t u) a subterm of r s (t u) ?
No, r s (t u) ≡ (r s) (t u)

1.1.2 Currying (Schönfinkeln)

Currying means reducing a function with multiple arguments to functions with a single argu-
ment.

Example:

f :

{
IN → IN
x 7→ x+ x

In lambda calculus: f = λx.x+ x

g :

{
IN × IN → IN
(x, y) 7→ x+ y

Incorrect translation of g: λ(x, y).x+ y
Not permitted by lambda calculus syntax!

Instead: g ∼= g′ = λx.λy.x+ y
Therefore: g′: IN → (IN → IN)

Example of evaluation: g(5, 3) = 5 + 3

1.1. SYNTAX 5

Evaluation in lambda-calculus:

g′ 5 3 ≡ ((g′ 5) 3) ≡ (((λx.λy.x+ y) 5) 3)
→β ((λy.5 + y) 3)
→β 5 + 3

The term g′ 5 is well defined. This is called partial application.
Illustration: In the table for g

g 1 2 · · ·
1 · · · · ·
2 · · · · ·
...

...
...

. . .

g′ 5 corresponds to the unary function that is given by row 5 of the table.

In set theory: (A×B)→ C ∼= A→ (B → C)
(”‘∼=”’: isomorphism in set theory)

1.1.3 Static binding and substitution

A variable x in term s is bound by the first λx above x (when viewing the term as a tree). If
there is no λx above some x, that x is called free in s.

Example:

λx.(λy . λx . x y) x y

666 6
free variable

Each arrow points from the occurence of a variable to the binding λ.

The set of free variables of a term can be defined recursively:

FV : term → set of variables

FV (c) = ∅
FV (x) = {x}
FV (s t) = FV (s) ∪ FV (t)
FV (λx.t) = FV (t) \ {x}

Definition 1.1.3 A term is said to be closed if FV (t) = ∅.

Definition 1.1.4 The substitution of t for all free occurrences of x in s (pronounced “s with
t for x”) is recursively defined:

6 CHAPTER 1. UNTYPED LAMBDA CALCULUS

x[t/x] = t

a[t/x] = a if a 6= x

(s1 s2)[t/x] = (s1[t/x]) (s2[t/x])

(λx.s)[t/x] = λx.s

(λy.s)[t/x] = λy.(s[t/x]) if x 6= y ∧ y /∈ FV (t)

(λy.s)[t/x] = λz.(s[z/y][t/x]) if x 6= y ∧ z /∈ FV (s) ∪ FV (t)

To make the choice of z in the last rule deterministic, assume that the variables are linearly
ordered and that we take the first z such that z /∈ FV (t) ∪ FV (s). The next to last equation
is an optimized form of the last equation that avoids unnecessary renamings.

Example:

(x (λx.x) (λy.z x)) [y/x] = (x[y/x]) ((λx.x)[y/x]) ((λy.z x)[y/x])

= y (λx.x) (λy′.z y)

Lemma 1.1.5 s[x/x] = s

s[t/x] = s if x /∈ FV (s)

s[y/x][t/y] = s[t/x] if y /∈ FV (s)

s[t/x][u/y] = s[u/y][t[u/y]/x] if x /∈ FV (u)

s[t/x][u/y] = s[u/y][t/x] if y /∈ FV (t) ∧ x /∈ FV (u)

Remark: These equations hold only up to renaming of bound variables. For example, take
equation 1 with s = λy.y: (λy.y)[x/x] = (λz.y[z/y][x/x]) = (λz.z) 6= (λy.y). We will identify
terms like λy.y and λz.z below.

1.1.4 α-conversion

If s and t are identical up to renaming of bound variables we write s =α t. Motto:

Gebundene Namen sind Schall und Rauch.

Example:

x (λx, y.x y) =α x (λy, x.y x) =α x (λz, y.z y)
6=α z (λz, y.z y)
6=α x (λx, x.x x)

Definition 1.1.6

a =α a

s1 =α t1 s2 =α t2
(s1 s2) = (t1 t2)

z /∈ V (s) ∪ V (t) s[x := z] =α t[y := z]

(λx.s) = (λy.t)

where V (t) is the set of all variables in t:

V (c) = ∅, V (x) = {x}, V (s t) = V (s) ∪ V (t), V (λx.t) = V (t) ∪ {x}

and s[x := t] is non-renaming substitution:

x[x := t] = t
a[x := t] = a if a 6= x

(s1 s2)[x := t] = (s1[x := t] s2[x := t])
(λy.s)[x := t] = (λy.s[x := t])

1.2. β-REDUCTION (CONTRACTION) 7

(λx.x x)z
↗β ↘β

(λx.x x)((λy.y)z) z z

↘β

2
↗β

((λy.y)z)((λy.y)z)

Figure 1.1: →β is confluent?

Convention:

1. We identify α-equivalent terms, i.e. we work with α-equivalent classes of terms. Example:
λx.x = λy.y.

2. Bound variables are automatically renamed in such a way that they are different from all
the free variables. Example: Let K = λx.λy.x:

K s →β λy.s (if y /∈ FV (s))

K y →β λy′.y (y is free in y and that’s why y is renamed as y′)

This simplifies substitution: if x 6= y then

(λy.s)[t/x] = λy.(s[t/x])

because by automatic renaming y /∈ FV (t).

1.2 β-reduction (contraction)

Definition 1.2.1 A β-redex (reducible expression) is a term of form (λx.s)t. We define
β-reduction by

C[(λx.s)t] →β C[s[t/x]]

Here C[v] is a term with a subterm v, and C is a context, i.e. a term with a hole where v is put.
A term t is in β-normal form if it is in normal form with regard to →β.

Example: λx. (λx.x x)(λx.x)︸ ︷︷ ︸→β λx. (λx.x)(λx.x)︸ ︷︷ ︸→β λx.λx.x

β-reduction is

• nondeterministic: a term may have more than one β-reduct. Example: see Fig. 1.1.

• confluent: see below

• non-terminating. Example: Ω := (λx.x x)(λx.x x)→β Ω.

Definition 1.2.2 Alternative to definition 1.2.1 one can define →β inductively as follows:

1. (λx.s)t→β s[t/x]

2. s→β s
′ ⇒ (s t)→β (s′ t)

8 CHAPTER 1. UNTYPED LAMBDA CALCULUS

3. s→β s
′ ⇒ (t s)→β (t s′)

4. s→β s
′ ⇒ λx.s→β λx.s

′

That is to say, →β is the smallest relation that contains the above-mentioned four rules.

Lemma 1.2.3 t→∗β t′ ⇒ s[t/x]→∗β s[t′/x]

Proof: by induction on s:

1. s = x: obvious

2. s = y 6= x: s[t/x] = y →∗β y = s[t′/x]

3. s = c: as in 2.

4. s = (s1 s2):

(s1 s2)[t/x] = (s1[t/x]) (s2[t/x]) →∗β (s1[t
′/x]) (s2[t/x]) →∗β

→∗β (s1[t
′/x]) (s2[t

′/x]) = (s1 s2)[t
′/x] = s[t′/x]

(using the induction hypothesis si[t/x]→∗β si[t′/x], i = 1, 2, as well as transitivity of →∗β)

5. s = λy.r: s[t/x] = λy.(r[t/x]) →∗β λy.(r[t′/x]) = (λy.r)[t′/x] = s[t′/x]

(using the induction hypothesis r[t/x]→∗β r[t′/x]) 2

Lemma 1.2.4 The four rules in Definition 1.2.2 are valid with →∗β in place of →β.

Lemma 1.2.5 s→β s
′ ⇒ s[t/x]→β s

′[t/x]

Proof: by induction on the derivation of s→β s
′ (rule induction) as defined in Definition 1.2.2.

1. s = (λy.r)u→β r[u/y] = s′:

s[t/x] = (λy.(r[t/x]))(u[t/x])→β (r[t/x])[u[t/x]/y] = (r[u/y])[t/x] = s′[t/x]

2. s1 →β s
′
1 and s = (s1 s2)→β (s′1 s2) = s′:

Induction hypothesis: s1[t/x]→β s
′
1[t/x]

⇒ s[t/x] = (s1[t/x])(s2[t/x])→β (s′1[t/x])(s2[t/x]) = (s′1 s2)[t/x] = s′[t/x]

3. Analogous to 2.

4. Exercise. 2

Corollary 1.2.6 s→n
β s
′ ⇒ s[t/x]→n

β s
′[t/x]

Proof: by induction on n 2

Corollary 1.2.7 s
∗→β s

′ ∧ t
∗→β t

′ ⇒ s[t/x]
∗→β s

′[t′/x]

Proof: s[t/x]
∗→ s′[t/x]

∗→ s′[t′/x]

Does this also hold? t→β t
′ ⇒ s[t/x]→β s[t

′/x]

Exercise 1.2.8 Show s→β t ⇒ FV (s) ⊇ FV (t). Why does FV (s) = FV (t) not hold?

1.2. β-REDUCTION (CONTRACTION) 9

1.2.1 Confluence

We try to prove confluence via the diamond property. As seen in Fig 1.1, →β does not have
the diamond property. There t := ((λy.y)z)((λy.y)z) cannot be reduced to z z in one step.

1. Attempt: parallel reduction of independent redexes (as symbol: ⇒) since t⇒ z z.

Problem: ⇒ does not have the diamond property either:

(λx.
︷ ︸︸ ︷
(λy.x y) c)(

︷ ︸︸ ︷
(λx.x) d)︸ ︷︷ ︸ �

�
��

�
�
��

((λx.x) c) d

@
@
@R

@
@
@R (λy. ((λx.x) d)︸ ︷︷ ︸ y) c︸ ︷︷ ︸

@
@
@R

@
@
@R

c d

(λy.((λx.x)d)y)c⇒ c d does not hold since (λy.((λx.x)d)y)c contains nested redexes.

Definition 1.2.9 The parallel (and nested) reduction relation > is defined inductively:

1. s > s

2. λx.s > λx.s′ if s > s′

3. (s t) > (s′ t′) if s > s′ and t > t′ (parallel)

4. (λx.s)t > s′[t′/x] if s > s′ and t > t′ (parallel and nested)

Example:
(λx.((λy.y) x︸ ︷︷ ︸

x

))((λx.x) z︸ ︷︷ ︸
z

)

︸ ︷︷ ︸
> z

Note:

> is proper subset of →∗β: (λf.f z)(λx.x) →β (λx.x)z →β z and (λf.f z)(λx.x) >
(λx.x)z hold, but (λf.f z)(λx.x) > z does not.

Lemma 1.2.10 s→β t⇒ s > t

Proof: by induction on the derivation of s→β t according to definition 1.2.2.

1. If: s = (λx.u) v →β u[v/x] = t
⇒ (λx.u) v > u[v/x] = t, since u > u and v > v

Remaining cases: exercises 2

Lemma 1.2.11 s > t⇒ s→∗β t

Proof: by induction on the derivation of s > t according to definition 1.2.9.

4. If: s = (λx.u) v > u′[v′/x] = t, u > u′, v > v′

Induction hypotheses: u
∗→ u′, v

∗→ v′

s = (λx.u)v →∗β (λx.u′)v →∗β (λx.u′)v′ →β u
′[v′/x]

Remaining cases: left as exercise 2

10 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Therefore
∗→β and >∗ are identical.

The next lemma follows directly from the analysis of applicable rules:

Lemma 1.2.12 λx.s > t ⇒ ∃s′. t = λx.s′ ∧ s > s′

Lemma 1.2.13 s > s′ ∧ t > t′ ⇒ s[t/x] > s′[t′/x]

Proof:

By induction on s; in case s = (s1 s2), case distinction by applied rule is necessary.
Details are left as exercises. The proof is graphically illustrated as follows:

�
�
�

�
�
�

�
�

�
�

�
�

@
@
@
@
@
@

@
@
@
@
@
@

s s′s[t/x] s′[t′/x]

x x x
�
�
�

�
�
�

�
�
�

A
A
A

A
A
A

A
A
A

t t t

x x
�
�
�

�
�
�

A
A
A

A
A
A

t′ t′

>
6

reductions-
front

Theorem 1.2.14 > has the diamond-property.

Proof: we show s > t1 ∧ s > t2 ⇒ ∃u. t1 > u ∧ t2 > u by induction on s.

1. s is Atom ⇒ s = t1 = t2 =: u

2. s = λx.s′

⇒ ti = λx.t′i and s′ > t′i (for i = 1, 2)
⇒ ∃u′. t′i > u′ (i = 1, 2) (by induction hypothesis)
⇒ ti = λx.t′i > λx.u′ =: u

3. s = (s1 s2)

Case distinction by rules. Convention: si > s′i, s
′′
i and s′i, s

′′
i > ui.

(a) (By induction hypothesis)

(s1 s2) >3 (s′1 s
′
2)

∨3 ∨3
(s′′1 s

′′
2) >3 (u1 u2)

(b) (By induction hypothesis and Lemma 1.2.13)

(λx.s1)s2 >4 s′1[s
′
2/x]

∨4 ∨
s′′1[s′′2/x] > u1[u2/x]

(c) (By induction hypothesis and Lemma 1.2.13)

(λx.s1)s2 >3 (λx.s′1)s
′
2

∨4 ∨4
s′′1[s′′2/x] > u1[u2/x]

From the Lemmas 1.2.10 and 1.2.11 and Theorem 1.2.14 with A.2.5, the following lemma is
obtained directly

Corollary 1.2.15 →β is confluent.

1.3. η-REDUCTION 11

1.3 η-reduction

λx.(t x) →η t if x /∈ FV (t)

Motivation for η-reduction: λx.(t x) and t behave identically as functions:

(λx.(t x))u→β t u

if x /∈ FV (t).

Of course η-reduction is not allowed at the root only.

Definition 1.3.1 C[λx.(t x)] →η C[t] if x /∈ FV (t).

Fact 1.3.2 →η terminates.

We prove local confluence of →η. Confluence of →η follows from local confluence because
of termination and Newmann’s Lemma.

Fact 1.3.3 s→η t ⇒ FV (s) = FV (t)

Lemma 1.3.4 →η is locally confluent.

•
η

> •

∨
η ∗

∨
η

• ∗
η

> •

Proof: by case discintion on the relative position of the two redexes in syntax tree of terms.

1. The redexes lie in separate subterms.

→η

→η

↓η ↓η

�
�
�

�
�
�

�
�

�
�
�
�

@
@
@
@
@
@

@
@
@
@
@
@

�
�
�

�
�
�

@
@
@

@
@
@

�
�
�

�
�
�

@
@
@

@
@
@

�
�
�

�
�
�

�
�

�
�
�
�

@
@
@
@
@
@

@
@
@
@
@
@

�
�
�

�
�
�

@
@
@

@
@
@

�
�
�

�
�
�

@
@
@

@
@
@

12 CHAPTER 1. UNTYPED LAMBDA CALCULUS

2. The redexes are identical. Obvious.

3. One redex is above the other. Proof by Fact 1.3.3.

λx.s x →η s

↓η ↓η
λx.s′ x →η s′

Corollary 1.3.5 →η is confluent.

Proof: →η terminates and is locally confluent.

Exercise: Define →η inductively and prove the local confluence of →η with help of that
definition.

Remark:

→η does not have the diamond-property. But one can prove that
=→η has the diamond-

property by slightly modifiying Lemma 1.3.3.

Lemma 1.3.6

•
β

> •

∨
η ∗

∨
η

• =

β
> •

Proof: by case distinction on the relative position of redexes.

1. In separate subtrees: obvious

2. η-redex far below β-redex:

(a) t→η t
′:

(λx.s)t
β
> s[t/x]

∨

η ∗

∨

η

(λx.s)t′

β
> s[t′/x]

using the lemmas t→η t
′ ⇒ s[t/x]→∗η s[t′/x].

(b) s→η s
′:

(λx.s)t
β
> s[t/x]

∨

η

∨

η

(λx.s′)t
β
> s′[t/x]

1.4. λ-CALCULUS AS AN EQUATIONAL THEORY 13

3. β-redex (s→β s
′) far below the η-redex:

λx.s x
β
> λx.s′ x

∨

η

∨

η

s
β

> s′

with help of exercise 1.2.8.

4. β-redex (s→β s
′) directly below the η-redex (i.e. overlapped):

(λx.(s x))t
β

> s t

∨

η ∗

∨

η

s t
=

β
> s t

5. β-redex directly below the η-redex:

λx.((λy.s)x)
β
> λx.s[x/y]

∨

η ∗

∨

η

λy.s
=

β
> λy.s

because λy.s =α λx.s[x/y] as x 6∈ FV (s) due to λx.((λy.s)x)→η λy.s 2

By Lemma A.3.3,
∗→β and

∗→η commute. Since both are confluent, with the lemma of
Hindley and Rosen the following corollary holds.

Corollary 1.3.7 →βη is confluent.

1.4 λ-calculus as an equational theory

1.4.1 β-conversion

Definition 1.4.1 [equivalence modulo β-conversion]

s =β t :⇔ s↔∗β t

Alternatively:
(λx.s) t =β s[t/x] t =β t

s =β t

λx.s =β λx.t

s =β t

t =β s

s1 =β t1 s2 =β t2
(s1 s2) =β (t1 t2)

s =β t t =β u

s =β u

Since→β is confluent, one can replace the test for equivalence with the search for a common
reduction.

14 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Theorem 1.4.2 s =β t is decidable if s and t possess a β-normal form, otherwise undecidable.

Proof: Decidability follows directly from Corollary A.2.8, since→β is confluent. Undecidability
follows from the fact that λ-terms are programs and program equivalences are undecidable. 2

1.4.2 η-conversion and extensionality

Extensionality means that two functions are equal if they are equal on all arguments:

ext :
∀u.s u = t u

s = t

Theorem 1.4.3 β + η and β + ext define the same equivalence on λ-terms.

Proof:

η ⇒ ext: ∀u.s u = t u ⇒ s x = t x where x /∈ FV (s, t) ⇒ s =η λx.(s x) = λx.(t x) = t

β + ext⇒ η: let x /∈ FV (s): ∀u.(λx.(s x))u =β s u ⇒ λx.(s x) = s 2

Definition 1.4.4

s→βη t :⇔ s→β t ∨ s→η t

s =βη t :⇔ s↔∗βη t

Analogously to =β , we have the following theorem.

Theorem 1.4.5 s =βη t is decidable if s and t possess a βη-normalform, otherwise undecidable.

Since →η is terminating and confluent, the following corollary holds.

Corollary 1.4.6 ↔∗η is decidable.

1.5 Reduction strategies

Theorem 1.5.1 If t has a β-normal form, then this normal form can be reached by reducing
the leftmost β-redex in each step.

Example (Ω := (λx.x x)(λx.x x)):

(λx.5)
︷︸︸︷
(Ω)︸ ︷︷ ︸

5

call-by-value

call-by-name

?

H
HHj

1.6. LABELED TERMS 15

1.6 Labeled terms

Motivation: let-expression

let x = s in t →let t[s/x]

let can be interpreted as labeled β-redex. Example:

let x = (let y = s in y + y) in x ∗ x > let x = s+ s in x ∗ x

∨ ∨
(let y = s in y + y) ∗ (let y = s in y + y) > (s+ s) ∗ (s+ s)

Set of labeled terms T is defined as follows:

t ::= c | x | (t1 t2) | λx.t | (λx.s) t

Note: λx.s /∈ T (why?)

Definition 1.6.1 β-reduction of labeled terms:

C[(λx.s) t]→β C[s[t/x]]

Goal: →β terminates.

Property: →β cannot generate new labeled redexes, but can only copy and modify existing
redexes. The following example shall illustrate the difference between →β and →β:

(λx.x x)(λx.x x)→β (λx.x x)(λx.x x)︸ ︷︷ ︸
new β-redex

but

(λx.x x)(λx.x x)→β (λx.x x)(λx.x x)︸ ︷︷ ︸
no β-redex

If s→β t, then every β-redex in t derives from exactly one β-redex in s.

In the following, let s[t1/x1, . . . , tn/xn] be the simultaneous substitution of xi by ti in s.

Lemma 1.6.2

1. s, t1, . . . , tn ∈ T ⇒ s[t1/x1, . . . , tn/xn] ∈ T

2. s ∈ T ∧ s→β t ⇒ t ∈ T

Exercise 1.6.3 Prove this lemma.

Theorem 1.6.4 Let s, t1, . . . , tn ∈ T . Then s[t1/x1, . . . , tn/xn] terminates with regard to →β

if every ti terminates.

16 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Proof: by induction on s. Set [σ] := [t1/x1, . . . , tn/xn].

1. s is a constant: obvious

2. s is a variable: • ∀i. s 6= xi: obvious
• s = xi: obvious since ti terminates

3. s = (s1 s2):
s[σ] = (s1[σ])(s2[σ]) terminates, because si[σ] terminates (Ind.-Hyp.), and s1[σ] →∗β λx.t
is impossible due to Lemma 1.6.2, since s1[σ] ∈ T but λx.t /∈ T .

4. s = λx.t: s[σ] = λx.(t[σ]) terminates since t[σ] terminates (Ind.-Hyp.).

5. s = (λx.t)u:
s[σ] = (λx.(t[σ]))(u[σ]), where t[σ] and u[σ] terminate (Ind.-Hyp.). Every infinite reduc-
tion would look like this:

s[σ] →∗β (λx.t′) u′ →β t′[u′/x] →β . . .

But: Since u[σ] terminates and u[σ]→∗β u′, u′ must also terminate. Since t[σ]→∗β t′, the

following also holds:

t[σ, u′/x]︸ ︷︷ ︸
This terminates by Ind.-Hyp.,

since σ and u′ terminate.

→∗β t′[u′/x]︸ ︷︷ ︸
So, this must also

terminate.

⇒ Contradiction to the assumption that there is an infinite reduction. 2

Corollary 1.6.5 →β terminates for all terms in T .

Length of reduction sequence: not more than exponential in the size of the input term.

Theorem 1.6.6 →β is confluent.

Proof: →β is locally confluent. (Use termination and Newmanns Lemma.) 2

Connection between →β and the parallel reduction >:

Theorem 1.6.7 Let |s| the unlabeled version of s ∈ T . Then,

s > t ⇔ ∃s ∈ T . s→∗β t ∧ |s| = s

1.7 Lambda calculus as a programming language

1.7.1 Data types

• bool:

true, false, if with if true x y →∗β x
and if false x y →∗β y

1.7. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE 17

is realized by

true = λxy.x

false = λxy.y

if = λzxy.z x y

• Pairs:

fst, snd, pair with fst(pair x y) →∗β x
and snd(pair x y) →∗β y

is realized by

fst = λp.p true

snd = λp.p false

pair = λxy.λz.z x y

Example:

fst(pair x y) →β fst(λz.z x y) →β (λz.z x y)(λxy.x)
→β (λx y.x) x y →β (λy.x) y →β x

• nat (Church-Numerals):

0 = λf.λx.x

1 = λf.λx.f x

2 = λf.λx.f(f x)

...

n = λf.λx.fn(x) = λf.λx. f(f(. . . f︸ ︷︷ ︸
n-times

(x) . . .))

Arithmetic:

succ = λn.λf x.f(n f x)

add = λmn.λf x.m f(n f x)

iszero = λn.n(λx.false) true

Therefore:

add n m →2 λf x.n f(m f x) →2 λf x.n f(fm(x))
→2 λf x.fn(fm(x)) = λf x.fn+m(x) = n+m

Exercise 1.7.1

1. Lists in λ-calculus: Find λ-terms for nil, cons, hd, tl, null with

null nil →∗ true hd(cons x l) →∗ x
null(cons x l) →∗ false tl(cons x l) →∗ l

18 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Hint: Use Pairs.

2. Find mult with mult m n
∗→ m ∗ n

and expt with expt m n
∗→ mn

3. Difficult: Find pred with pred m+ 1
∗→ m and pred 0

∗→ 0

1.7.2 Recursive functions

Given a recursive function f(x) = e, we look for a non-recursive representation f = t. Note:
f(x) = e is not a definition in the mathematical sense, but only a (not uniquely) characterizing
property.

f(x) = e
⇒ f = λx.e
⇒ f =β (λf.λx.e) f
⇒ f is fixed point of F := λfx.e, i.e. f =β F f

Let fix a fixed point operator, i.e. fix t =β t(fix t) for all terms t. Then f can be defined
non-recursively as follows

f := fix F

Recursive f and non-recursive f behave identically:

1. recursive:
f s = (λx.e) s→β e[s/x]

2. non-recursive:

f s = fix F s =β F (fix F) s = F f s →2
β e[f/f, s/x] = e[s/x]

Example:
add m n = if (iszero m) n (add (pred m) (succ n))

add := fix (λadd.λmn.if (iszero m) n (add (pred m)(succ n))︸ ︷︷ ︸
F

)

add 1 2 = fix F 1 2
=β F (fix F) 1 2
→3
β if (iszero 1) 2 (fix F (pred 1) (succ 2))

→∗β fix F 0 3

=β F (fix F) 0 3
→3
β if (iszero 0) 3 (...)

→∗β 3

Note: even add 1 2
∗→β 3 holds. Why?

We now show that fix, i.e. the fixed point operator, can be defined in pure λ-calculus. The
two most well-known solutions are:

Church: Vf := λx.f(x x) and Y := λf.Vf Vf

Y is called “Church’s fixed-point combinator”

Y t →β Vt Vt →β t(Vt Vt) ←β t((λf.Vf Vf)t) = t(Y t)

Therefore: Y t =β t(Y t)

1.7. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE 19

Turing: A := λx f.f(x x f) and Θ := A A→β λf.f(A A f). Therefore

Θ t = A A t→β (λf.f(A A f))t →β t(A A t) = t(Θ t)

Therefore: Θ t→∗β t(Θ t)

1.7.3 Computable functions on IN

Definition 1.7.2 A (possibly partial) function f : INn → IN is λ-definable if there exists a
closed pure λ-term (without free variables!) with

1. t m1 . . . mn →∗β m , if f(m1, . . . ,mn) = m

2. t m1 . . . mn has no β-normal form, if f(m1, . . . ,mn) is undefinied.

Theorem 1.7.3 All the Turing machine-computable functions (while-computable, µ-recursive)
are lambda-definable, and vice versa.

20 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Chapter 2

Typed Lambda Calculi

Why types ?

1. To avoid inconsistency.

Gottlob Frege’s predicate logic (≈ 1879) allows unlimited quantification over predicate.

Russel (1901) discovers the paradox {X | X /∈ X}.

Whitehead & Russel’s Principia Mathematica (1910–1913) forbids X ∈ X using a type
system based on “levels”.

Church (1930) invents the untyped λ-calculus as a logic.

True, False, ∧, ... are λ-terms

{x | P} ≡ λx.P x ∈M ≡ Mx

inconsistence: R := λx. not (x x) ⇒ R R =β not (R R)

Church’s simply typed λ-calculus (1940) forbids x x with a type system.

2. To avoid programming errors.
Classification of type systems:

monomorphic: Each identifier has exactly one type.

polymorphic: An identifier can have multiple types.

static: Type correctness is checked at compile time.

dynamic: Type correctness is checked at run time.

static dynamic

monomorphic Pascal

polymorphic ML, Haskell Lisp, Smalltalk
(C++,) Java

3. To express specifications as types.

Method: dependent types

Example: mod: nat × m:nat → {k | 0 ≤ k < m}
Result type depends on the input value

This approach is known as “type theory”.

21

22 CHAPTER 2. TYPED LAMBDA CALCULI

2.1 Simply typed λ-calculus (λ→)

The simply typed λ-calculus is the heart of any typed (functional) programming language. Its
types are built up from base types via the function space constructor according to the following
grammar, where τ always represents a type:

τ ::= bool | nat | int | . . .︸ ︷︷ ︸
basic types

| τ1 → τ2 | (τ)

Convention: → associates to the right:

τ1 → τ2 → τ3 ≡ τ1 → (τ2 → τ3)

Terms:

1. implicitly typed: terms as in the pure untyped λ-calculus, but each variable has a unique
(implicit) type.

2. explicitly typed terms: t ::= x | (t1 t2) | λx : τ.t

In both cases these are so-called “raw” typed terms, which are not necessarily type-correct, e.g.
λx : int.(x x).

2.1.1 Type checking for explicitly typed terms

The goal is the derivation of statements of the form Γ ` t : τ , i.e. t has the type τ in the context
Γ. Here Γ has a finite function from variables to types. Notation: [x1 : τ1, . . . , xn : τn]. The
notation Γ[x : τ] means to override Γ by the mapping x 7→ τ . Formally:

(Γ[x : τ])(y) =

{
τ if x = y
Γ(y) otherwise

Type checking rules:
Γ(x) is defined

Γ ` x : Γ(x)
(Var)

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1
Γ ` (t1 t2) : τ2

(App)
Γ[x : τ] ` t : τ ′

Γ ` λx : τ.t : τ → τ ′
(Abs)

Examples:

• A simple derivation:
Γ[x : τ] ` x : τ

Γ ` λx : τ.x : τ → τ

• Not every term has a type. There are no context Γ and types τ and τ ′ such that Γ ` λx :
τ.(x x) : τ ′, because

τ = τ2 → τ1
Γ[x : τ] ` x : τ2 → τ1

τ = τ2
Γ[x : τ] ` x : τ2

Γ[x : τ] ` (x x) : τ1 τ ′ = τ → τ1

Γ ` λx : τ.(x x) : τ ′

⇒ Contradiction: ¬∃τ1, τ2 : τ2 → τ1 = τ2

2.1. SIMPLY TYPED λ-CALCULUS (λ→) 23

The type checking rules constitute an algorithm for type checking by applying them backwards
as in Prolog. In a functional style this becomes a function type that takes a context and a term
and computes the type of the term or fails:

type Γ x = Γ(x)
type Γ (t1 t2) = let τ1 = type Γ t1

τ2 = type Γ t2
in case τ1 of

τ → τ ′ ⇒ if τ = τ2 then τ ′ else fail

| ⇒ fail

type Γ (λx : τ.t) = τ → type (Γ[x : τ]) t

Definition 2.1.1 t is type-correct (with regard to Γ), if there exists τ such that Γ ` t : τ .

Lemma 2.1.2 The type of a type-correct term is uniquely determined (with respect to a fixed
context Γ).

This follows because there is exactly one rule for each syntactic form of term: the rules are
syntax-directed. Hence we are dealing with a monomorphic type system.

Lemma 2.1.3 Each subterm of a type-correct term is type-correct.

This is obvious from the rules.

The subject reduction theorem tells us that β-reduction preserves the type of a term. This
means that the reduction of a well-typed term cannot lead to a runtime type error.

Theorem 2.1.4 (Subject reduction) Γ ` t : τ ∧ t→β t
′ ⇒ Γ ` t′ : τ

This does not hold for β-expansion:

[x : int, y : τ] ` y : τ

and

y : τ ←β (λz : bool.y) x

but: (λz : bool.y) x is not type-correct!

Theorem 2.1.5 →β (→η,→βη) over type-correct terms is confluent.

This does not hold for all raw terms:

λx : int.(λy : bool.y) x
��
�*β

λx : int.x

HHHj
η λy : bool.y

Theorem 2.1.6 →β terminates over type-correct terms.

The proof is discussed in Section 2.2. A vague intuition is that the type system forbids self-
application and thus recursion. This has the following positive consequence:

Corollary 2.1.7 =β is decidable for type-correct terms.

24 CHAPTER 2. TYPED LAMBDA CALCULI

But there are type-correct terms s, such that the shortest reduction of s into a normal form has
the length

22
2·
··
2

︸ ︷︷ ︸
size of s

.

However, these pathological examples are very rare in practice.
The negative consequence of Theorem 2.1.6 is the following:

Corollary 2.1.8 Not all computable functions can be represented as type-correct λ→-terms.

In fact, only polynomials + case distinction can be represented in λ→.
Question: Why are typed functional languages still Turing complete?

Theorem 2.1.9 Let Yτ be a family of constants of type (τ → τ)→ τ that reduce like fixed-point
combinators: Yτ t → t (Yτ t). Then every computable function can be represented as a closed
type-correct λ→-term which contains as its only constants the Yτ .

Proof sketch:

1. Values of basic types (booleans, natural numbers, etc) are representable by type-correct
λ→-terms.

2. Recursion with Yτ

2.2 Termination of →β

The proof in this section is based heavily on the combinatorial proof of Loader [Loa98]. A more
general proof, which goes back to Tate, can also be found in Loader’s notes or in the standard
literature [HS86, GLT90, Han04].

For simplicity, we work with implicitly typed or even untyped terms.

Definition 2.2.1 Let t be an arbitrary λ-term. We say that t diverges (with regard to →β)
if and only if there exists an infinite reduction sequence t →β t1 →β t2 →β · · ·. We say that t
terminates (with regard to →β) and write t⇓ if and only if t does not diverge.

We first define a subset T of untyped λ-terms:

r1, . . . , rn ∈ T
x r1 . . . rn ∈ T

(V ar)
r ∈ T

λx.r ∈ T (λ)
r[s/x] s1 . . . sn ∈ T s ∈ T

(λx.r) s s1 . . . sn ∈ T
(β)

Lemma 2.2.2 t ∈ T ⇒ t⇓

Proof By induction on derivation of t ∈ T (“rule induction”).
(V ar) (x r1 . . . rn)⇓ follows directly from r1⇓, . . . , rn⇓, since x is a variable.
(λ) (λx.r)⇓ directly follows from r⇓.
(β) Because of I.H. (r[s/x] s1 . . . sn)⇓, r⇓ and si⇓, i = 1, . . . , n. If (λx.r) s s1 . . . sn diverged,

there would have to exist the infinite reduction sequence of the following form:

(λx.r) s s1 . . . sn →∗β (λx.r′) s′ s′1 . . . s
′
n →β r

′[s′/x] s′1 . . . s
′
n →β · · ·

since r, s (by I.H.) and all si terminate. However, r[s/x] s1 . . . sn →∗β r′[s′/x] s′1 . . . s
′
n also holds.

This contradicts the termination of r[s/x] s1 . . . sn. Therefore (λx.r) s s1 . . . sn cannot diverge.
2

One can also show the converse. Thus T contains exactly the terminating terms.

2.2. TERMINATION OF →β 25

Now we shall show that T is closed under substitution and application of type-correct terms.
This is done by induction on the types. As we work with implicitly typed terms, the context Γ
disappears. We simply write t : τ .

We call a type τ applicative if and only if for all t, r and σ, the following holds.

t : τ → σ r : τ t ∈ T r ∈ T
t r ∈ T

We call τ substitutive if and only if for all s, r and σ, the following holds.

s : σ r : τ x : τ s ∈ T r ∈ T
s[r/x] ∈ T

Lemma 2.2.3 Every substitutive type is applicative.

Proof Let τ be substitutive. We show that τ is applicative by induction on the derivation of
t ∈ T .

(V ar) If t = x r1 . . . rn and all ri ∈ T , then t r = x r1 . . . rn r ∈ T follows with (V ar) since
r ∈ T by assumption.

(λ) If t = λx.s and s ∈ T , then s[r/x] ∈ T holds since τ is substitutive. Therefore
t r = (λx.s)r ∈ T follows with (β) since r ∈ T by assumption.

(β) If t = (λx.r) s s1 . . . sn and r[s/x] s1 . . . sn ∈ T and s ∈ T , then by I.H. r[s/x] s1 . . . sn r ∈
T holds. Since s ∈ T , t r = (λx.r) s s1 . . . sn r ∈ T follows with (β). 2

Lemma 2.2.4 Let τ = τ1 → · · · → τk → τ ′, where τ ′ is not a function type. If all τi are
applicative, then τ is substitutive.

Proof by induction on the derivation of s ∈ T .

(V ar) If s = y s1 . . . sn and all si ∈ T , then si[r/x] ∈ T holds by I.H., i = 1, . . . , n. If
x 6= y, then s[r/x] = y(s1[r/x]) . . . (sn[r/x]) ∈ T by (V ar). If x = y, then y : τ holds, and
therefore si : τi, and si[r/x] : τi, i = 1, . . . , n as well. Since all τi are applicative, s[r/x] =
r(s1[r/x]) . . . (sn[r/x]) ∈ T holds.

(λ) If s = λy.u where u ∈ T , then by I.H. u[r/x] ∈ T . From this, s[r/x] = λy.(u[r/x]) ∈ T
follows by (λ).

(β) If s = (λy.u) s0 s1 . . . sn by u[s0/y] s1 . . . sn ∈ T and s0 ∈ T , then s[r/x] = (λy.(u[r/x]))
(s0[r/x]) . . . (sn[r/x]) ∈ T follows by (β) since u[r/x][s0[r/x]/y](s1[r/x]) . . . (sn[r/x])
= (u[s0/y] s1 . . . sn)[r/x] ∈ T and s0[r/x] ∈ T by I.H. 2

Exercise 2.2.5 Show that for type-correct s and t the following holds: if s ∈ T and t ∈ T then
(s t) ∈ T .

Theorem 2.2.6 If t is type-correct, then t ∈ T holds.

Proof by induction on the derivation of the type of t. If t is a variable, then t ∈ T holds by
(V ar). If t = λx.r, then t ∈ T follows by (λ) from the I.H. r ∈ T . If t = r s, then t ∈ T follows
by exercise 2.2.5 from the I.H. r ∈ T and s ∈ T . 2

Theorem 2.1.6 is just a corollary of Theorem 2.2.6 and Lemma 2.2.2.

26 CHAPTER 2. TYPED LAMBDA CALCULI

2.3 Type inference for λ→

Types: τ ::= bool | int | . . . basic types
| α | β | γ | . . . type variables
| τ1 → τ2

Terms: untyped λ-terms

Type inference rules:

Γ ` x : Γ(x)
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` (t1 t2) : τ2

Γ[x : τ1] ` t : τ2
Γ ` (λx.t) : τ1 → τ2

Terms can have distinct types (polymorphism):

λx.x : α→ α

λx.x : int→ int

Definition 2.3.1 τ1 & τ2 :⇔ ∃ Substitution θ (of types for type variable) with τ1 = θ(τ2)
(“τ2 is more general than or equivalent to τ1.”)

Example:
int→ int & α→ α & β → β & α→ α

Every type-correct term has a most general type:

Theorem 2.3.2 Γ ` t : τ ⇒ ∃σ. Γ ` t : σ ∧ ∀τ ′.Γ ` t : τ ′ ⇒ τ ′ & σ

Proof idea: Consider rules as a Prolog program that compute the type from the term. Given the
term, the rules are deterministic, i.e. at most one rule is applicable at any point. Hence there is
at most one type. Because rule application uses unification, it computes the most general type
(via the most general unifier).

Example, using Roman instead of Greek letters as type variables:

Γ ` λx.λy.(y x) : A
if [x : B] ` λy.(y x) : C and A = B → C
if [x : B, y : D] ` (y x) : E and C = D → E
if [x : B, y : D] ` y : F → E and [x : B, y : D] ` x : F
if D = F → E and B = F

Therefore: A = B → C = F → (D → E) = F → ((F → E)→ E)

2.4 let-polymorphism

Terms:
t ::= x | (t1 t2) | λx.t | let x = t1 in t2

The intended meaning of let x = t1 in t2 is t2[t1/x]. The meaning of a term with multiple
lets is uniquely defined because of termination and confluence of →β. We will now examine
type inference in the presence of let.

Example:
let f = λx.x︸ ︷︷ ︸

f : ∀α. α→ α︸ ︷︷ ︸
τ

in pair (f 0)︸ ︷︷ ︸
f : τ [int/α]

(f true)︸ ︷︷ ︸
f : τ [bool/α]

Note

2.4. LET-POLYMORPHISM 27

• ∀-quantified type variables can be replaced by arbitrary types.

• Although (λf.pair (f 0) (f true)) (λx.x) is semantically equivalent to the above let-term,
it is not type-correct, because λ-bound variables do not have ∀-quantified types.

The grammar for types remains unchanged as in Section 2.3 but we add a new category of type
schemas (σ):

σ ::= ∀α.σ | τ

Any type is a type schema. In general, type schemas are of the form ∀α1 . . . ∀αn.τ , compactly
written ∀α1 . . . αn.τ .

Example of type schemas are α, int, ∀α.α→ α and ∀αβ.α→ β. Note that (∀α.α→ α)→
bool is not a type schema because the universal quantifier occurs inside a type.

The type inference rules now work with a context that associates type schemas with variable
names: Γ is of the form [x1 : σ1, . . . , xn : σn]:

Γ ` x : Γ(x)
(Var)

Γ ` t1 : τ2 → τ Γ ` t2 : τ2
Γ ` (t1 t2) : τ

(App)

Γ[x : τ1] ` t : τ2

Γ ` (λx.t) : τ1 → τ2
(Abs)

Γ ` t1 : σ1 Γ[x : σ1] ` t2 : σ2
Γ ` let x = t1 in t2 : σ2

(Let)

Note that λ-bound variables have types (τ), let-bound variables have type schemas (σ).
Then there are the quantifier rules:

Γ ` t : ∀α.σ
Γ ` t : σ[τ/α]

(∀Elim)

Γ ` t : σ
Γ ` t : ∀α.σ (∀Intro) if α /∈ FV (Γ)

where FV ([x1 : σ1, . . . , xn : σn]) =
⋃n
i=1 FV (σi) and FV (∀α1 . . . αn.τ) = V ar(τ) \ {α1, . . . , αn}

and V ar(τ) is the set of all type variables in τ .
Why does (∀Intro) need the condition α /∈ FV (Γ)?
Logic: x = 0 ` x = 0 6⇒ x = 0 ` ∀x.x = 0
Programming: λx.let y = x in y + (y 1) should not be type-correct.

But this term has a type if we drop the side-condition:

[x : α] ` x : α

[x : α] ` x : ∀α.α (∀Intro)
...

[y : ∀α.α] ` y + (y 1) : int

[x : α] ` let y = x in y + (y 1) : int

λy.let y = x in y + (y 1) : α→ int

Problem: The rules do not provide any algorithm, since quantifier rules are not syntax-directed,
i.e. they are (almost) always applicable.

Solution: Integrate (∀Elim) with (Var) and (∀Intro) with (Let):

Γ(x) = ∀α1 . . . αn.τ

Γ ` x : τ [τ1/α1, . . . , τn/αn]
(Var’)

28 CHAPTER 2. TYPED LAMBDA CALCULI

Γ ` t1 : τ Γ[x : ∀α1 . . . αn.τ] ` t2 : τ2
Γ ` let x = t1 in t2 : τ2

(Let’) {α1, . . . , αn} = FV (τ) \ FV (Γ)

(Var) and (Let) are replaced by (Var’) and (Let’), respectively. (App) and (Abs) remain un-
changed. (∀Intro) and (∀Elim) disappear: The resulting system has four syntax-directed rules.
Note: Type schemas occur only in Γ.

Example:

D = F ∗ E
Γ′ ` p : F → (E → D)

F = A
Γ′ ` x : F

Γ′ ` p x : E → D
C = E

Γ′ ` z : E

Γ′ ` (p x) z : D

Γ[x : A] ` λz.p x z : C → D

B = A ∗G
Γ′′ ` y : G→ B

G = A ∗ int
Γ′′ ` y : H → G

H = int

Γ′′ ` 1 : H

Γ′′ ` y 1 : G

Γ′′ ` y (y 1) : B

Γ[x : A] ` let y = λz.p x z in y (y 1) : B

Γ = [1 : int, p : ∀α, β.α→ β → (α ∗ β)] ` λx.let y = λz.p x z in y (y 1) : A→ B

(where Γ′ = Γ[x : A, z : C] and Γ′′ = Γ[x : A, y : ∀C.C → A ∗ C])

⇒ B = A ∗ (A ∗ int)

Proof of the equivalence of two systems: Each derivation tree with explicit quantifier rules can
be transformed in such a way that (∀Elim) is found only under the (Var)-rules and (∀Intro)
only in the left premise of the (let)-rule.

Complexity of type inference:

• without let: linear

• with let: dexptime-complete (Types can grow exponentially with the size of the terms.)

Example:

let x0 = λy.λz.z y y
in let x1 = λy.x0 (x0 y)

in . . .
. . .

let xn+1 = λy.xn (xn y)
in xn+1 (λz.z)

Chapter 3

The Curry-Howard Isomorphismus

typed λ-calculus (λ→) constructive logic (intuitionistic propositional logic)

Types: τ ::= α |β | γ | . . . | τ → τ Formulas: A ::= P |Q |R | . . .︸ ︷︷ ︸
propositional variable

|A→ A

Γ ` t : τ Γ ` A (Γ: set of formulas)

Γ ` t1 : τ2 → τ1 Γ ` t2 : τ2
Γ ` (t1 t2) : τ1

(App) Γ ` A→ B Γ ` A
Γ ` B (→ Elim)

Γ[x : τ1] ` t : τ2
Γ ` λx.t : τ1 → τ2

(Abs)
Γ, A ` B

Γ ` A→ B
(→ Intro)

Γ ` x : Γ(x) if Γ(x) is defined Γ ` A if A ∈ Γ

type-correct λ-terms proofs

Example:
[x : α] ` x : α
` λx.x : α→ α

A ` A
` A→ A

The λ-term encodes the skelton of the proof. This derivation is represented in a compact manner
by λx.x and can be reconstructed by type inference.

Proofs where the first premise of →Elim is proved by →Intro can be reduced:

Γ ` (λx.s) t : A
(→Elim)

Γ ` λx.s : B → A Γ ` t : B
(→Intro)

Γ, x : B ` s : A @
@
@

�
�
�T2HH

HH
H
HH

HH

��
��

�
��

��

T1

x : B ` x : B x : B ` x : B

Γ ` s[t/x] : A
Z

Z
Z

Z
Z
Z

�
�
�
�
�
�

T ′1

@
@
@

@
@
@

�
�
�

�
�
�T ′2 T ′2

Proof reduction = Lemma-elimination

Correctness follows from subject reduction: types are invariant under β-reduction.

29

30 CHAPTER 3. THE CURRY-HOWARD ISOMORPHISMUS

Example:

((A→ A)︸ ︷︷ ︸
a′

→ B → C)

︸ ︷︷ ︸
x

→ ((A→ A)→ B)︸ ︷︷ ︸
y

→ C =: φ

Two proofs:

λx.λy.(λa′.x a′ (y a′)) (λa.a) : φ proof by lemma A→ A
−→ λx.λy.x (λa.a) (y (λa.a)) : φ proof in normal form

Definition 3.0.1 A proof is in normal form if the corresponding λ-term is in normal form.

A proof is in normal form if and only if no part of the proof has the following form.

(→ Elim)
(→ Intro) · · ·

· · · . . .

. . .

The following lemma follows directly.

Lemma 3.0.2 A proof in normal form, which ends with (→Elim), has to have the following
form.:

Γ ` A
(→Elim)

Γ ` An → A Γ ` An
\
\
\
\
\
\
\\

�
�
�
�
�
�
��

T

@
@
@

�
�
�T1

(∗)

where the subtree T has the following form:

Γ ` An → A
(→Elim)

Γ ` An−1 → (An → A) Γ ` An−1
@

@
@

�
�
�

.
.
.

Γ ` A1 → . . .→ An → A Γ ` A1
(→Elim)

assumption-rule @
@
@

�
�
�

In the sequel note that every formula is a subformula of itself.

Theorem 3.0.3 In a proof of Γ ` A in normal form, only subformulas of Γ and A occur.

Proof: by induction on the derivation of Γ ` A.

1. Γ ` A with A ∈ Γ: obvious

31

2.

Γ ` A1 → A2
(→Intro)

Γ, A1 ` A2

@
@
@

�
�
�T

Induction hypothesis: only subformulas of Γ, A1 and A2 occur in T .

Hence the assertion follows immediately.

3. See (∗) above.

Because of assumption-rule: A1 → A2 → . . .→ An → A ∈ Γ.

Ind. hyp. for T1: in T1 only subformulas of Γ, An ⇒ in T1 only subformulas of Γ.

Ind. hyp. for T : in T only subformulas of Γ, An → A ⇒ in T only subformulas of Γ.

Therefore, in the whole tree only subformulas of Γ. 2

Theorem 3.0.4 Γ ` A is decidable.

The proof is the following algorithm:

Finite search for proof tree in normal form (always exists, since →β terminates for
type-correct terms) by building up from the root to the leaves. As long as the tree is
complete, choose unproven leaf:
If Γ ` A with A ∈ Γ, then proof by assumption rule.
Otherwise cycle test: does the leaf already occur on the path to the root?
If yes: backtrack to and modify most recent choice in this subtree.
Otherwise use (→Intro) (premise is uniquely determined) or

Γ ` An → A Γ ` An
Γ ` A (→ Elim)

so that A1 → · · ·An → A ∈ Γ (finite choice).
This algorithm terminates because of the following two reasons. First, the root has
only a finite number of subformulas and above the root only these subformulas occur
(by construction), i.e. there are only a finite number of Γ′ ` A′ which can appear above
the root (the context is a set, i.e. no duplicates). Second, cycles are detected. 2

Example:

Γ ` P → Q→ R Γ ` P
Γ ` Q→ R

(→ Elim)
Γ ` P → Q Γ ` P

Γ ` Q (→ Elim)

Γ := P → Q→ R,P → Q,P ` R (→ Elim)

` (P → Q→ R)→ (P → Q)→ P → R
3 times (→ Intro)

Peirce’s law ((P → Q) → P) → P is not provable in intuitionistic logic. Note that ` φ is
never provable by (→ Elim) because that would require a formula A1 → . . . → An → φ in the
context but the context is empty. Hence we try proof by (→ Intro):

Γ ` An → P Γ ` An
Γ := (P → Q)→ P ` P (→ Elim)

` ((P → Q)→ P)→ P
(→ Intro)

32 CHAPTER 3. THE CURRY-HOWARD ISOMORPHISMUS

with A1 → · · · → An → P ∈ Γ ⇒ n = 1 and An = P → Q. Consider Γ ` P → Q.
The derivation cannot be done by (Elim), because Γ does not contain any formula of the form
· · · → (P → Q). Hence:

Γ, P ` Bn → Q Γ, P ` Bn
Γ, P ` Q → (Elim)

Γ ` P → Q
→ (Intro)

with B1 → · · · → Bn → Q ∈ Γ, P — but such a formula is not found in Γ and P . Thus Peirce’s
law is not provable.

Note that Peirce’s law is a tautologie in classical two-valued propositional logic. Therefore
constructive logic is incomplete with regard to two-valued models. There are are alternative,
more complicated notions of models for intuitinistic logic. The decision problem if a proposi-
tional formula is a tautology is NP-complete for classical two-valued logic but PSPACE-complete
for intuitionistic logic.

Exercise 3.0.5 Prove ` ((((p→ q)→ p)→ p)→ q)→ q.

Here are two examples that go beyond propositional logic but illustrate the fundamental
difference between constructive and not-constructive proofs:

1. ∀k ≥ 8.∃m,n. k = 3m+ 5n

Proof: by induction on k.

Base case: k = 8⇒ (m,n) = (1, 1)

Step: Assume k = 3m+ 5n (induction hypothesis)

Case distinction:

1. n 6= 0 ⇒ k + 1 = (m+ 2) ∗ 3 + (n− 1) ∗ 5

2. n = 0 ⇒ m ≥ 3 ⇒ k + 1 = (m− 3) ∗ 3 + (n+ 2) ∗ 5 2

Corresponding algorithm:

f : IN≥8 → IN× IN

f(8) = (1, 1)
f(k + 1) = let (m,n) = f(k)

in if n 6= 0 then (m+ 2, n− 1) else (m− 3, n+ 2)

2. ∃ irrational a, b. ab is rational.

Case distinction:

1.
√

2
√
2 rational ⇒ a = b =

√
2

2.
√

2
√
2 irrational ⇒ a =

√
2
√
2, b =

√
2 ⇒ ab =

√
2 2 = 2

Classification:

Question Types Formulas

t : τ ? (t explicitly typed) Does t have the type τ ? Is t a correct proof of formula τ ?
∃τ.t : τ type inference What does the proof t prove?
∃t.t : τ program synthesis proof search

Appendix A

Relational Basics

A.1 Notation

In the following,→ ⊆ A× A is an arbitrary binary relation over a set A. Instead of (a, b) ∈ →
we write a→ b.

Definition A.1.1

x
=→ y :⇔ x→ y ∨ x = y (reflexive closure)

x↔ y :⇔ x→ y ∨ y → x (symmetric closure)

x
n→ y :⇔ ∃x1, . . . , xn. x = x1 → x2 → . . .→ xn = y

x
+→ y :⇔ ∃n > 0. x

n→ y (transitive closure)

x
∗→ y :⇔ ∃n ≥ 0. x

n→ y (reflexive and transitive closure)

x
∗↔ y :⇔ x (↔)∗ y (reflexive, transitive and symmetric closure)

Definition A.1.2 An element a is in normal form wrt. → if these does not exists any b that
satisfies a→ b.

A.2 Confluence

Definition A.2.1 A relation →

is confluent, if x
∗→ y1 ∧ x

∗→ y2 ⇒ ∃z. y1
∗→ z ∧ y2

∗→ z.

is locally confluent, if x→ y1 ∧ x→ y2 ⇒ ∃z. y1
∗→ z ∧ y2

∗→ z.

has the diamond-property, if x→ y1 ∧ x→ y2 ⇒ ∃z. y1 → z ∧ y2 → z.

x
∗
> y1 x > y1 x > y1

∗
∨

∗
∨ ∨

∗
∨ ∨ ∨

y2
∗
> z y2

∗
> z y2 > z

confluence local confluence the diamond-property

Figure A.1: Sketch of Definition A.2.1

33

34 APPENDIX A. RELATIONAL BASICS

Fact A.2.2 If → is confluent, then every element has at most one normal form.

Lemma A.2.3 (Newmann’s Lemma) If → is locally confluent and terminating, then → is
also confluent.

Proof: by contradiction

Assumption: → is not confluent, i.e. there is an x with two distinct normal forms n1
and n2. We show: If x has two distinct normal forms, x has a direct successor with
two distinct normal forms. This is a contradiction to “→ terminates”.

x
�
�

��	
y1

@
@
@@R
y2

@@

@@R

* ��

��	

*

•

��

��

��

��

��	

*

n1
?
*

n

@@

@@

@@

@@

@@R

*

n2

1. n 6= n1: y1 has two distinct normal forms.
2. n 6= n2: y2 has two distinct normal forms. 2

Example of a locally confluent, but not confluent relation:

• • • •�

6

?
-

Lemma A.2.4 If → has the diamond-property, then → is also confluent.

Proof: see the following sketch:

• > • > · · · > •

∨ ∨ ∨
• > • > · · · > •

∨ ∨ ∨
...

...
...

∨ ∨ ∨
• > • > · · · > •

2

Lemma A.2.5 Let → and > be binary relations with → ⊆ > ⊆ ∗→. Then → is confluent if >
has the diamond-property.

A.2. CONFLUENCE 35

Proof:

1. Because ∗ is monotone and idempotent, → ⊆ > ⊆ ∗→ implies
∗→ ⊆ >∗ ⊆ (

∗→)∗ =
∗→, and

thus
∗→ = >∗.

2. > has the diamond property
⇒ > is confluent (Lemma A.2.4)
⇔ >∗ has the diamond property

⇔ ∗→ has the diamond property
⇔ → is confluent. 2

Definition A.2.6 A relation → ⊆ A×A has the Church-Rosser property if

a
∗↔ b ⇔ ∃c. a ∗→ c

∗← b

Theorem A.2.7 A relation → is confluent iff it has the Church-Rosser property.

Proof:

“⇐”: obvious

“⇒”:

1. a
∗→ c

∗← b ⇒ a
∗↔ b

2. a↔ b:

• ∗
> b

∗
∨

∗
∨

• ∗
> • ∗

> •

∗
∨

∗
∨

∗
∨

• ∗
> • ∗

> • ∗
> •

∗
∨

∗
∨

∗
∨

∗
∨

a
∗
> • ∗

> • ∗
> c

Corollary A.2.8 If → is confluent and if a and b have the normal form a↓ and b↓, then the
following holds:

a
∗↔ b ⇔ a↓ = b↓

Proof:

⇐ : obvious

⇒ :

a � -*

[CR]
b

?

* [K]

?

*[K]

@@

@@R

*
��

��	

*

c
��

��	

@@

@@R
a↓

[K]

= b↓

[K]: confluence of →
[CR]: The Church-Rosser property of →

36 APPENDIX A. RELATIONAL BASICS

A.3 Commuting relations

Definition A.3.1 Let →1 and →2 be arbitrary relations. →1 and →2 commute if for all
s, t1, t2 the following holds:

(s→1 t1 ∧ s→2 t2)⇒ ∃u. (t1 →2 u ∧ t2 →1 u)

•
1
> •

∨
2

∨
2

•
1
> •

Lemma A.3.2 (Hindley/Rosen) If →1 and →2 are confluent, and if
∗→1 and

∗→2 commute,
then →12 :=→1 ∪ →2 is also confluent.

Proof:

• ∗
1

> • ∗
2

> • ∗
1

> •

∗

∨

2 [Km] ∗

∨

2 [Kf] ∗

∨

2 [Km] ∗

∨

2

• ∗
1

> • ∗
2

> • ∗
1

> •

∗

∨

1 [Kf] ∗

∨

1 [Km] ∗

∨

1 [Kf] ∗

∨

1

• ∗
1

> • ∗
2

> • ∗
1

> •

[Kf]: →1 or rather →2 is confluent.
[Km]: →1 and →2 commute. 2

Lemma A.3.3

•
1

> •

∨
2 ∗

∨
2

• =

1
> •

⇒ ∗→1 and
∗→2 commute.

Proof:
s

1
> •

1
> · · ·

1
> t

∨
2 ∗

∨
2

• =

1
> •

∨
2 ∗

∨
2 ∗

∨

2

• =

1
> •

∨
2 ∗

∨
2

u
=

1
> • =

1
> · · · =

1
> •

A.3. COMMUTING RELATIONS 37

Formally: use an induction first on the length of s →∗1 t, and then use an induction on the
length of s→∗2 u. 2

38 APPENDIX A. RELATIONAL BASICS

Bibliography

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and Semantics. North-
Holland, 2nd edition, 1984.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[Han04] Chris Hankin. An Introduction to Lambda Calculi for Computer Scientists. King’s
College Publications, 2004.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ-Calculus.
Cambridge University Press, 1986.

[Loa98] Ralph Loader. Notes on simply typed lambda calculus. Technical Report ECS-LFCS-
98-381, Department of Computer Science, University of Edinburgh, 1998.

39

