Lambda Calculus

Tobias Nipkow

June 23, 2015

Contents

1 Untyped Lambda Calculus 5
1.1 Syntax oo e 5
111 Terms o o o 5

1.1.2 Currying (Schonfinkeln) oo Lo 6

1.1.3 Static binding and substitution oL Lo 7

1.1.4 a-conversion 8

1.2 p-reduction (contraction)o 9
1.2.1 Confluence e 10

1.3 mreduction L e 13
1.4 A-calculus as an equational theory 15
1.4.1 B-conversion Lo e 15

1.4.2 np-conversion and extensionality 16

1.5 Reduction strategies 16
1.6 Labeled terms 17
1.7 Lambda calculus as a programming language 18
1.7.1 Datatypes e e 18

1.7.2 Recursive functions Lo 20

1.7.3 Computable functionson IN 21

2 Combinatory logic (CL) 23
2.1 Relationship between A-calculusand CL 24
2.2 Implementation issues Lo 25

3 Typed Lambda Calculi 29
3.1 Simply typed A-calculus (A7)o 30
3.1.1 Type checking for explicitly typed terms 30

3.2 Terminationof =g 32
3.3 Type inference for X7 33
3.4 let-polymorphism 34

4 The Curry-Howard Isomorphismus 37
A Relational Basics 41
A1 Notation e 41
A2 Confluence 41
A3 Commuting relations Lo 44

CONTENTS

Chapter 1

Untyped Lambda Calculus

1.1 Syntax

1.1.1 Terms
Definition 1.1.1. The set of lambda calculus terms is defined as follows:
t = ¢ | x| (tit2) | (Az.it)

(t1 t2) is called application and represents the application of a function ¢; to an argument ¢s.

(Az.t) is called abstraction and represents the function with formal parameter and body ¢;
x is bound in .

Convention:
T,Y, 2 variables
c,d, f,qg,h constants
a,b atoms = variables U constants
r, S8, t,U, v, w terms

In lambda calculus there is one computation rule called S-reduction: ((Az.s) t) can be reduced
to s[t/x], the result of replacing the arguments ¢ for the formal parameter z in s. Examples:

((Az.((f 2)x))5) =8 ((f 5)5)
(Az.z)(Az.7)) —3 (A\z.x)
(z(M\y.y)) cannot be reduced

The precise definition of s[t/x] needs some work.

Notation:
e Application associates to the left: (t1...t,) = (((t1 t2)t3)...tn)
e Outermost parentheses are omitted: t1...t, = (t1...t,)

e) binds to the right as far as possible.
Example: Ax.xz=Xx.(zz)Z (A\v.x) x

e Consecutive As can be combined: Azy...Z,.8 = Ar1....Ax,.8

6 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Terms as trees:
term: C T (/\J,’t) (t1 tz)

AT °

RN

tq to

8

tree: c

Example: term to tree (Az.f z) y

[
AT Y
[
f z
Definition 1.1.2. Term s is subterm of ¢, if the tree corresponding to s is a subtree of the

tree corresponding to t. Term s is a proper subterm of ¢ if s is a subterm of ¢ and s # t.

Example:

Is s (t u) a subterm of r s (t u) ?
No, rs(tu)=(rs)(tu)

1.1.2 Currying (Schonfinkeln)

Currying means reducing a function with multiple arguments to functions with a single argu-
ment.

Example:

f IN - IN
' rT—x+x

In lambda calculus: f = Az.x +x

[NxIN->N
T (@) = x4y

Incorrect translation of g1 A(z,y).x +y
Not permitted by lambda calculus syntax!

~ /

Instead: ¢ = ¢ = Ax\yx—+y
Therefore: g: N = (N - IN)

Example of evaluation: ¢(5,3) =5+ 3

1.1. SYNTAX 7

Evaluation in lambda-calculus:

d53 = (53 = ({((AxXyx+y)5)3)
—5 ((A\y.5+vy) 3)
—>g 5+3

The term ¢’ 5 is well defined. This is called partial application.
Illustration: In the table for g

g|r]2]--

1

g’ 5 corresponds to the unary function that is given by row 5 of the table.

In set theory: (AxB)—-C = A—(B—C)

((AN,

: isomorphism in set theory)

1.1.3 Static binding and substitution

A variable x in term s is bound by the first Ax above 2 (when viewing the term as a tree). If
there is no Az above some z, that z is called free in s.

Example:

Ar.(A\y. \x.zy)

L

)
T free variable

Fach arrow points from the occurence of a variable to the binding A.

The set of free variables of a term can be defined recursively:

FV: term — set of variables

FV(e) = 0

FV@) = {a}

FV(st) = FV(s)UFV(t)
FV(Axt) = FV(t)\{z}

Definition 1.1.3. A term ¢ is said to be closed if FV(t) = 0.

Definition 1.1.4. The substitution of ¢ for all free occurrences of x in s (pronounced “s with
t for) is recursively defined:

zt/x] = t
alt/z] = a ifa#x
(s1s2)[t/a] = (salt/x]) (s2lt/x])
(Ax.s)[t/xz] = Ax.s
(Ay-s)[t/x] = Ay.(st/z]) fex#yAy ¢ FV(t)
(Ay.s)[t/x] = Az.(s[z/y][t/x]) ifx#yNz¢ FV(s)UFV(t)

8 CHAPTER 1. UNTYPED LAMBDA CALCULUS

To make the choice of z in the last rule deterministic, assume that the variables are linearly
ordered and that we take the first z such that z ¢ FV(t) U FV(s). The next to last equation
is an optimized form of the last equation that avoids unnecessary renamings.

Example:
(z (Az.x) (Ny.z z)) [y/a] = (zly/z]) (Az.x)ly/z]) ((Ayz 2)[y/2])
= y (A\z.x) (N .z y)
Lemma 1.1.5. s[z/z] = s
s[t/z] = s if v ¢ FV(s)
sly/=][t/y] = s[t/x] ify & FV(s)
slt/xllufyl = slu/ylltlu/yl/=] if © & FV(u)
slt/allufyl = slu/yllt/z] ify g FV(E) Ax ¢ FV(u)

Remark: These equations hold only up to renaming of bound variables. For example, take
equation 1 with s = A\y.y: (A\y.y)[z/z] = (A\z.y[z/y][z/z]) = (A\z.2) # (Ay.y). We will identify
terms like Ay.y and Az.z below.

1.1.4 «-conversion

If s and t are identical up to renaming of bound variables we write s =, t. Motto:
Gebundene Namen sind Schall und Rauch.
Example:

r(A\r,yry) =o z\y,2yz) =0 x(\2,9.2Y)
#a 2 (A2,y.2y)
#o = (Ar, 7.2 T)

Definition 1.1.6.

51 =a t1 82 = 19 2@ V(s)UV(t) sx:=z] =4 tly:= 2]
a=q4a (s1 82) =q (t1 t2) (Ax.s) =4 (Ay.t)

where V(t) is the set of all variables in ¢:
V(c) =0, V(z) = {x}, V(st)=V(s)UV(t), V(Az.t) =V(t) U{z}

and s[x := t] is non-renaming substitution:

xlz:=t] = t

alx :=t] = a ifa#x
(s1s2)[w:=t] = (si[z:=1] salw:=1])
Az.s)z:=t] = (Ar.s)
Ous)le =1] = Qusle=f]) ey

Convention:

1. We identify a-equivalent terms, i.e. we work with a-equivalent classes of terms. Example:
AT.x = AY.y.

1.2. B-REDUCTION (CONTRACTION) 9

(A\x.x z)z
/s Ve
(Ax.z z)((\y.y)z) , zz
g 3
((Ay.y)2)((Ay-y)z)

Figure 1.1: —4 is confluent?

2. Bound variables are automatically renamed in such a way that they are different from all
the free variables. Example: Let K = Az.\y.x:

Ks —5 Mys (if y ¢ FV(s))
Ky —p My .y (y is free in y and that’s why y is renamed as y')

This simplifies substitution: if z # y then
(Ay.s)[t/x] = Ay.(s[t/x])

because by automatic renaming y ¢ FV ().

1.2 p-reduction (contraction)

Definition 1.2.1. A (-redex (reducible expression) is a term of form (Az.s)t. We define

B-reduction by
Cl(Az.s)t] —p Cls[t/x]]

Here Clv] is a term with a subterm v, and C'is a context, i.e. a term with a hole where v is put.
A term t is in S-normal form if it is in normal form with regard to — .

Example: Az. (A\z.z z)(Az.x) =5 Az. (Az.2)(Ar.z) = Az z.2
—_——— —_——

(B-reduction is
e nondeterministic: a term may have more than one S-reduct. Example: see Fig. 1.1.
e confluent: see below

e non-terminating. Example: Q := (Az.z z)(Av.z x) =3 Q.

Definition 1.2.2. Alternative to definition 1.2.1 one can define — g inductively as follows:
1. (A\z.s)t =g s[t/x]
2.s—=ps = (st)—=p(st)
3.s—=gs = (ts)—=p(ts)
4. s—=ps = Av.s =g Ar.d

That is to say, —+4 is the smallest relation that contains the above-mentioned four rules.

10

CHAPTER 1. UNTYPED LAMBDA CALCULUS

Lemma 1.2.3. If s = 8’ then Av.s =} Ax.s', (s t) =% (s' t) and (t s) =% (t 8').

Proof by induction on the length of the sequence s —>/’};, s,

Lemma 1.2.4. t =5 t' = s[t/z] =} s[t'/a]

Proof: by induction on s:

1.

2.

s = obvious

s=yFax slt/a]=ypy=s[t'/z]

s=c: as in 2.

. s =(s1 s2):

(s182)[t/z] = (silt/a]) (s2lt/z]) —f (sat'/a]) (salt/x]) —p
=5 (slt'/a]) (s2lt’/2]) = (s1 82)[t'/x] = s[t'/a]

(using the induction hypothesis s;[t/z] =% si[t'/z], i = 1,2, as well as transitivity of —7)

. s = Ay.r slt/a] = Ay.(r[t/z]) =5 My.(r[t'/2]) = (\y.r)[t' /2] = s[t' /]

(using the induction hypothesis r[t/z] —7 r[t'/z]) O

Lemma 1.2.5. s =g s’ = s[t/z] =g §'[t/z]

Proof: by induction on the derivation of s —g s’ (rule induction) as defined in Definition 1.2.2.

1.

3.

4.

s = (A\y.r)u =g rlufy] = s

slt/a] = (My.(r[t/2])) (ult/x]) —=p (rlt/a])[ult/z]/y] = (rlu/y))]t/z] = s'[t/2]

.51 —p s) and s = (51 52) —p (5] s2) = ¢":

Induction hypothesis: s1[t/z] —3 s [t/]

= sft/z] = (s1[t/z])(s2[t/x]) —p (s1[t/x])(s2[t/]) = (51 s2)[t/x] = &'[t/]
Analogous to 2.

Exercise. 0

Corollary 1.2.6. s =} s’ = st/z] =} s'[t/]

Proof: by induction on n]

Corollary 1.2.7. s 555’ At Sgt! = s[t/z] Sp st /]

Proof: s[t/z] =5 s'[t/x] Dp §'[t' /2]

Does this also hold? t —g t' = s[t/z] =3 s[t'/x]

Exercise 1.2.8. Show s =gt = FV(s) D FV(t). Why does F'V(s) = FV(t) not hold?

1.2. B-REDUCTION (CONTRACTION) 11

1.2.1 Confluence

We try to prove confluence via the diamond property. As seen in Fig 1.1, —3 does not have
the diamond property. There ¢ := ((Ay.y)z)((Ay.y)z) cannot be reduced to z z in one step.

1. Attempt: parallel reduction of independent redexes (as symbol: =) since t = z z.

Problem: = does not have the diamond property either:

/ (A\z.x) c)d \
(Az. (A\y.xz y) ¢)(A\z.x) d)
\ Oy, (Oaz) d) o) ¢

——

-~

cd

(My.((Ax.z)d)y)e = ¢ d does not hold since (Ay.((Az.z)d)y)c contains nested redexes.
Definition 1.2.9. The parallel (and nested) reduction relation > is defined inductively:
1. s>s

2. Ae.s > s’ if s > ¢
3. (st)> (s't) if s> s and t > t' (parallel)

4. (Ax.s)t > §'[t'/x] if s > s’ and t >t (parallel and nested)

Example:
Az ((A\y.y) z))(A\x.x) z) > 2
—_——— ———
Note:

> is proper subset of —%: (Af.f 2)(A\z.z) =g (Av.x)z —p 2z and (Af.f 2)(Azv.x) >
(Az.z)z hold, but (A\f.f 2z)(Az.xz) > z does not.
Lemma 1.2.10. s =gt = s>t
Proof: by induction on the derivation of s —4 t according to definition 1.2.2.

1. If: s = (Azu) v =g ufv/z] =t
= (Az.u) v > ufv/z] =t, since u > u and v > v

Remaining cases: exercises O

Lemma 1.2.11. s >t = s =5t
Proof: by induction on the derivation of s > ¢t according to definition 1.2.9.

4. If: s = (A\zw) v > /' /z] = t,u > v/ ;0 >0

Induction hypotheses: u — o/, v — v/

s = (Avu)v =5 (Av.u)o =5 (Av.u)v" —g u'v' /7]

Remaining cases: left as exercise O

Therefore i>5 and >* are identical.
The next lemma follows directly from the analysis of applicable rules:

12 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Lemma 1.2.12. Az.s >t = 3s'. t =X z.s’ A s> 4
Lemma 1.2.13. s > s A t >t = s[t/z] > §[t'/z]

Proof:

By induction on s; in case s = (s1 $2), case distinction by applied rule is necessary.
Details are left as exercises. The proof is graphically illustrated as follows:

s[t/x] 5 > s st/ x]
T T T T T
reductions-
t t t front 4 4

Theorem 1.2.14. > has the diamond-property.
Proof: we show s >t A s>ty = Fu.t; >u A to > u by induction on s.
1. sisan atom = s=1t] =ty =:u

2. s=Mx.¢
= t; = Azt and ' >t (for i =1,2)
=3t >d (1=1,2) (by induction hypothesis)
=t = Av.t, > v = u

3. s =(s1 82)

/ /./

S

Case distinction by rules. Convention: s; > s, s/ and s, s/ > u;.

(a) (By induction hypothesis)
(s152) >3 (s)
V3 V3
(s s5) >3 (w1 u2)
(b) (By induction hypothesis and Lemma 1.2.13)
(Ax.s1)s2 >4 $i[sh/x]
V4 V
silsg/z] > wfug/7]
(¢) (By induction hypothesis and Lemma 1.2.13)
(Az.s1)s2 >3 (Ax.s))sh
V4 V4

silsy/x] > wuifuz/x]

From the Lemmas 1.2.10 and 1.2.11 and Theorem 1.2.14 with A.2.5, the following lemma is
obtained directly

Corollary 1.2.15. —3 is confluent.

1.3. n-REDUCTION 13

1.3 n-reduction
Xe(tx) =y t ifxdg FV(t)
Motivation for n-reduction: Az.(t x) and ¢ behave identically as functions:
(Az.(t z))u —gtu
ifx ¢ FV(t).
Of course n-reduction is not allowed at the root only.
Definition 1.3.1. C[Az.(t x)] —, C[t] ifz & FV(t).
Fact 1.3.2. —, terminates.

We prove local confluence of —,. Confluence of —;, follows from local confluence because
of termination and Newmann’s Lemma.

Fact 1.3.3. s =, t = FV(s)=FV(t)

Lemma 1.3.4. —, is locally confluent.

n |
n *aT)
* \

Proof: by case discintion on the relative position of the two redexes in syntax tree of terms.

1. The redexes lie in separate subterms.

+n n

14 CHAPTER 1. UNTYPED LAMBDA CALCULUS

2. The redexes are identical. Obvious.

3. One redex is above the other. Proof by Fact 1.3.3.

AT.ST —y; S

by b

\e.s'w =, 8
Corollary 1.3.5. —, is confluent.

Proof: —, terminates and is locally confluent.

Exercise: Define —, inductively and prove the local confluence of —, with help of that
definition.

Remark:

—y, does not have the diamond-property. But one can prove that ;n has the diamond-
property by slightly modifiying Fact 1.3.3.

Lemma 1.3.6.

Proof: by case distinction on the relative position of redexes.
1. In separate subtrees: obvious

2. n-redex far below S-redex:

(a) t—y, t':
(Ax.s)t —— s[t/z]
oo
n * “77
\
Az.s)t' - - > s[t'/x]
g
using the lemmas ¢t —, t' = s[t/x] — s[t'/z].
(b) s —, "
(Ax.s)t — s[t/z]
oo
n “77

v
(Az.s")t - - > §'[t/x]
B

1.4. A\-CALCULUS AS AN EQUATIONAL THEORY 15

3. B-redex (s —p §') far below the n-redex:

M\e.sx —> s’ x

6 |

n i
v
S ------ > ¢

g
with help of exercise 1.2.8.

4. B-redex (s —p ') directly below the n-redex (i.e. overlapped):

M. (sx)t —> st

U *11)

_ v

St ------>s5t
B

5. p-redex directly below the n-redex:
Az.((Ay.s)z) —> Az.s[z/y]
B ‘

n a7
V
AYy.s —------ > \y.s
because A\y.s =, Az.s[z/y| as x € FV(s) due to Ax.((Ay.s)x) —, Ay.s O

By Lemma A.3.3, i>@ and i>77 commute. Since both are confluent, with the lemma of
Hindley and Rosen the following corollary holds.

Corollary 1.3.7. —g, is confluent.

1.4)A-calculus as an equational theory

1.4.1 [-conversion

Definition 1.4.1 (equivalence modulo -conversion).

5=t & s<—>}§t

Alternatively:
(Az.s) t =g s[t/x] t=pt
s=gt s=pt sy =gt1 S2=pgt s=gt t=pgu
Ax.s =g Ax.t t=ps (s1 82) =p (t1 t2) s=gu

Since — g is confluent, one can replace the test for equivalence with the search for a common
reduction.

16 CHAPTER 1. UNTYPED LAMBDA CALCULUS

Theorem 1.4.2. s =g t is decidable if s and t possess a B-normal form, otherwise undecidable.
Proof: Decidability follows directly from Corollary A.2.8, since — 3 is confluent. Undecid-

ability follows from the fact that A-terms are programs and program equivalences are undecid-
able. O

1.4.2 n-conversion and extensionality

Extensionality means that two functions are equal if they are equal on all arguments:

Yu.su=1tu
ext: ——

s=1
Theorem 1.4.3. 5+ n and 8+ ext define the same equivalence on \-terms.

Proof:
n=ext: Vusu=tu = sx=tx wherex & FV(s,t) = s=p z.(sz)=Av.(tz) =1
B+ext=mn: let x ¢ FV(s): Vu.(Ax.(sz))u=gsu = Az.(sx)=s O
Definition 1.4.4.

syt & st Vst
s=pyt & SHZ’nt

Analogously to =3 , we have the following theorem.
Theorem 1.4.5. s =g, t is decidable if s andt possess a 3n-normalform, otherwise undecidable.
Since —, is terminating and confluent, the following corollary holds.

Corollary 1.4.6. <>} is decidable.

1.5 Reduction strategies

Theorem 1.5.1. Ift has a B-normal form, then this normal form can be reached by reducing
the leftmost B-redex in each step.

Example (2 := (Az.z x)(A\z.x z)):

call-by-value

=
(\2.5) Q)
N———’

\ 5 call-by-name

1.6. LABELED TERMS 17

1.6 Labeled terms

Motivation: let-expression
let x =sint —iet t[s/x]

let can be interpreted as labeled p-redex. Example:

letx=(lety=siny+y)inz*xzr —> letx=s+sinz*x

\
(lety=siny+y)*x(lety=siny+y) ----> (s+s)*(s+s)
Set of labeled terms 7T is defined as follows:
t = ¢ | x| (tite) | Azt | (Az.s)t

Note: Ax.s ¢ T (why?)

Definition 1.6.1. -reduction of labeled terms:
Cl(Ax.s) t] —p Cls[t/z]]

Goal: —g terminates.

Property: — 3 cannot generate new labeled redexes, but can only copy and modify existing
redexes. The following example shall illustrate the difference between — g and — 4:

(Az.z z) Az z) =g (A\r.x x)(Ao)

new [S-redex

but
Az z)(Az.x x) —p (Av.2 2)(A\2.2)

no é—redex

If s =5 t, then every f-redex in ¢ derives from exactly one -redex in s.

In the following, let s[t1/x1,...,t,/x,] be the simultaneous substitution of x; by ¢; in s.
Lemma 1.6.2.

1. s,ty,.. .ty €T = s[ti/x1, ..., th/xn] €T

2.s€T A s—pgt = teT
Exercise 1.6.3. Prove this lemma.

Theorem 1.6.4. Let s,t1,...,t, € T. Then s[ti/x1,...,t,/xy,] terminates with regard to —3
if every t; terminates.

Proof: by induction on s. Set [0] := [t1/x1,. .., tn/Tn].

18 CHAPTER 1. UNTYPED LAMBDA CALCULUS

1. s is a constant: obvious

2. sis a variable: e Vi.s # x;: obvious
e s — x;: obvious since t; terminates

3. s=(s1 s2):

slo] = (s1[o])(s2]o]) terminates, because s;[o] terminates (Ind.-Hyp.), and si[o] —% Az.t

is impossible due to Lemma 1.6.2, since s1[o] € T but Az.t ¢ T.
4. s = Ax.t: s[o] = \z.(t[o]) terminates since t[o] terminates (Ind.-Hyp.).

5. s = (Azx.t)u:

slo] = (Az.(t[o]))(u[o]), where t[o] and u[o] terminate (Ind.-Hyp.). Every infinite reduc-

tion would look like this:

5[0’] —)73 (Aﬂ?.t/) u’ _>é t’[u//gg] —>£

But: Since u[o] terminates and u[o] —% u’, v’ must also terminate. Since t[o] —7% t, the

following also holds:

tlo,u'/z] —5 t'[u/z]
—— = N——
This terminates by Ind.-Hyp., So, this must also
since o and v’ terminate. terminate.

= Contradiction to the assumption that there is an infinite reduction.
Corollary 1.6.5. —g terminates for all terms in T .
Length of reduction sequence: not more than exponential in the size of the input term.
Theorem 1.6.6. —p is confluent.

Proof: — 3 is locally confluent. (Use termination and Newmanns Lemma.)

Connection between — g and the parallel reduction >:

Theorem 1.6.7. Let |s| the unlabeled version of s € T. Then,

s>t & HQEI.§—>Z§1€A|§|:3

1.7 Lambda calculus as a programming language

1.7.1 Data types

e bool:

true, false, if with if truez y %E T
and if falsex y —>Z, Y

is realized by

true = Azy.r
false = Azy.y
if = Azzyzzy

1.7. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE

e Pairs:

fst, snd, pair with fst(pair z y) -} @
and snd(pair z y) =5y

is realized by

fst = Ap.ptrue
snd = Ap.p false
pair = JAxyAzzzy

Example:

fst(pairz y) —g fst(Azzzy) —g (Az.zzy)(Ary.x)
=g (Aryx)zy —5 (Ayx)y —p

e nat (Church-Numerals):

0 = Afdxx
1 = A fx
2 = M f(f=)
—_——

n-times

Arithmetic:
succ = MnAfz.f(n fz)
add = MmnAfz.m f(n fx)
iszero = An.n(A\zr.false) true
Therefore:

addnm —2? AMznf(mfz) =2 Moo f(f™()
=2 Az fr(f™=x) = Mz.frz) = n+m

Exercise 1.7.1.

1. Lists in A-calculus: Find A-terms for nil, cons, hd, t1, null with

null nil —* true hd(cons x) —* x
null(cons z l) —* false tl(cons x) —* 1

Hint: Use Pairs.

2. Find mult with mult mn 5 mxn

and expt with expt mn — m”

3. Difficult: Find pred with pred m +1 = m and pred 0 X 0

19

20 CHAPTER 1. UNTYPED LAMBDA CALCULUS

1.7.2 Recursive functions

Given a recursive function f(xz) = e, we look for a non-recursive representation f = t. Note:
f(x) = e is not a definition in the mathematical sense, but only a (not uniquely) characterizing

property.
fl@)=e

= f=Azr.e

= f=sAfAze)f
= fis fixed point of F':= Afx.e,ie. f=F f

Let fix be a fixed point operator, i.e. fix t =g t(fix t) for all terms t. Then f can be
defined non-recursively as follows
f:=fix F

Recursive f and non-recursive f behave identically:

1. recursive:
fs=(\z.e) s =g e[s/x]

2. non-recursive:
fs=1*fixFs =g F(fixF)s = F f s —>% elf/f,s/x] = els/x]

Example:
add mn = if (iszero m) n (add (pred m) (succ n))

add := fix (Aadd.Amn.if (iszero m) n (add (pred m)(succ n)))
F

add12 = fixF12
=5 F(fixF)12

—>‘Z§ if (iszero 1) 2 (fix F (pred 1) (succ 2))
—>E fix 03

—, F(£ixF)03

—% if (iszero 0) 3 (...)

—5 3

Note: even add 1 2 im 3 holds. Why?

We now show that fix, i.e. the fixed point operator, can be defined in pure A-calculus. The
two most well-known solutions are:

Church: Vy:=Xz.f(z) and Y := A\f.V; V;
Y is called “Church’s fixed-point combinator”
Yt =g ViV =g t(Vi Vi) <5 t(AfVyVi)t) = t(Y 1)
Therefore: Y t =g t(Y t)
Turing: A:=Xe f.f(rx f) and © := A A =g Af.f(A A f). Therefore
Ot = AAt =g (A f(AAf)t =5 t(AAL) = t(O1F)

Therefore: © t —7 ¢(© t)

1.7. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE 21

1.7.3 Computable functions on IN

Definition 1.7.2. A (possibly partial) function f : IN" — IN is A-definable if there exists a
closed pure A-term (without free variables!) with

I.tmg ... %%%m,iff(ml,...,mn):m
2. tmy ... my has no f-normal form, if f(m1,...,my) is undefinied.

Theorem 1.7.3. All the Turing machine-computable functions (while-computable, u-recursive)
are lambda-definable, and vice versa.

22

CHAPTER 1.

UNTYPED LAMBDA CALCULUS

Chapter 2
Combinatory logic (CL)

Keyword: ”variable-free programming”

Terms:
X = x | S| K | 1| ... | XiXe | (X)
variables constants
Application associates to the left asusual: XY Z = (XY)Z

Combinators are variable-free terms. (More precisely: they contain only S and K.)

Calculation rules for weak reduction (weak reduction, —,):

X =y X
KXY — X
SXYZ —w (X2)Y 2)
X 2 X' = XY -, XY AN YX =, YX

Examples:
I.SKXY -y KYXY) =, Y
2. SKKX —y KXKX) —y X

We see that S K K and | behave identically. Therefore | is theoretically unnecessary, but it is
useful in practice.

Theorem 2.0.4. —, is confluent.

Proof possibilities:
1. Proof by parallel reduction. (This is simpler than the proof by —3.)
2. Proof by “Each orthogonal term rewriting system is confluent.”

The term rewriting system —, is not terminating:

Exercise 2.0.5. Find a comtinator X with X —>VJg X.

23

24 CHAPTER 2. COMBINATORY LOGIC (CL)

Exercise 2.0.6. Find combinators A, W, B with

AX =% XX
WXY =5 XYY
BXY Z =% X (Y 2)

Theorem 2.0.7. If a CL-term has a normal form, then one can find this normal form by
always reducing the left hand side as far as possible.

Idea of proof: Orthogonal term rewriting system, and the fact that in each rule on the
previous page all function symbols are always to the left of the variables.]

2.1 Relationship between A-calculus and CL

Translation of A-terms into CL-terms:

(e : A-Terme — CL-Terme
(T)e = =
(st)er = (s)oL (t)oL
(Ax.s)c, = A'z.(s)cL

Auxiliary function A*: Vars x CL-terms — CL-terms

Nx.x = |
Nz X = KX ife ¢ FV(X)
Nz (XY) = Sz X)NzY) ifze FV(XY)

Lemma 2.1.1. (Mz.X)Y =¥ X[Y/z]
Proof: by structural induction on X
e if X =u: W2 X)Y=1Y =, Y =X[Y/x]
e if x in X is not free: (*z.X)Y =K XY — X = X[Y/z]
e if X=UV and z € FV(X):

Nz (U V)Y = SNaU)NzV)Y =y (Mz.0)Y)((Va.V)Y)
(Ind-Hyp.) —w UY/z])(V[Y/z]) = XY /]

Translation of CL-terms into A-terms:

(O CL-Terme — A-Terme
(x)y = =z
(K)x = Azyz
S)a = Azyzxz (y2)
(XY) = (X))

2.2. IMPLEMENTATION ISSUES 25

Theorem 2.1.2. ((s)cL)x —% s
Proof: by structural induction on s:
1. ((a)cL)x =a
2. By Ind.-Hyp.: ((t w)cL)r = ((H)en (w)or)a = (H)cu)a((w)en)r =g tu
3. By lemma 2.1.3 and Ind.-Hyp.: ((Az.t)cr)x = (\z.(t)cr)x —p Av.(t)cn)s —p Azt O
Lemma 2.1.3. (*z.P)) 53 Az.(P)y
Proof: exercise.
Corollary 2.1.4. S and K are sufficient to represent all the A-terms: ¥s3X.(X)\ =g s
Proof: set X := (s)cL

Exercise 2.1.5. Show that B, C, K and W are also sufficient to represent all A-terms () (Here:
CXYZ —y XZY). Is it possible to leave out K as well?

Theorem 2.1.6. ((X)\)crL =wext X where =y = <%

woand

Ve X o =yext Y @
X —w,ext Y

(ext) : (extensionality)

Theorem 2.1.7. X =Y = (X)\ =5 ((Y)\

Proof:
CKXY] —— C[X]
A4

Crl(Azy.7) Xy V3] —> CA[X)]

similarly for S g
But: generally s —3 t does not imply (s)cr, =% (t)cL.

Task: Find a counterexample!

2.2 Implementation issues
Problems with the effective implementation of —g:
e Naive implementation by copying is very inefficient!

e Copying is sometimes necessary.

Example: Let ¢ := \z.(f z).

26 CHAPTER 2. COMBINATORY LOGIC (CL)

Az.(z)t —p (o o)

y

with a copy:
—5 f(Ax.f x)
Without a copy, a cyclic term arises:
)\‘x
e /N
f °

generally:

N

(Az.s)

For f-reduction of (e t) copy of s is necessary!

e (-conversion is necessary.

Graph reduction

A radical solution is the translation into CL, because — is implemented on graphs without
copying:

1. (Kz)y —w

2.Szyz —w xz(y2):

2.2. IMPLEMENTATION ISSUES 27

Here the problem is that (-)cr, terms can get fairly large. But this problem can be com-
pensated by optimization (replace S and K by optimal combinators). However, the structure of
A-terms always gets lost.

De Bruijn Notation

A second solution is the so-called de Bruijn indices:

Az Ay (xz) = AXN(12)
Bound variables are indices that indicate how many As one must go through to get to the
binding site. The syntax is therefore

t =1 | At | (tl tg)

Examples:

1

Az.x A0
Ar.(yz) = A12)
De Bruijn terms are difficult to read because the same bound variable can appear with different

indexes. Example:
M.z (Ay.yx) = AO(A(01)))

But: a-equivalent terms are identical in this notation!
We now consider -reduction and substitution. Examples:

Az.(Ay zy)e —g Az Az
A((AAD)0) —5 AXL

In general:
(As)t —p s[t/0]

where s[t/i] means replacing ¢ in s by ¢, where free variables in ¢ may need to be incremented,
and decrementing all free variables > ¢ in s by 1. Formally:

jlt/i] = if i =j thent else if j >i then j— 1 else j
(s1s2)[t/i] = (s1[t/i])(s2[t/i])
(As)[t/i] = X(s[1ift(t,0)/i+1])

where 1ift(t,7) means incrementing all variables > i in ¢ by 1. Formally:

1ift(j,i) = if' j>ithen j+ 1 else
Vift((s1 89),8) = (Lift(s1,q))(1ift(s,7))
lift(As,i) = A(Lift(s,i+1))

Example:

Qayx)z = (A0 —5 (A1)[0/0]
= A(1[1/1]) = Al

A(1[1i£t(0,0)/1]) =
Y.z

11l

28

CHAPTER 2. COMBINATORY LOGIC (CL)

Chapter 3

Typed Lambda Calculi

Why types 7
1. To avoid inconsistency.
Gottlob Frege’s predicate logic (=~ 1879) allows unlimited quantification over predicate.
Russel (1901) discovers the paradox {X | X ¢ X}.

Whitehead & Russel’s Principia Mathematica (1910-1913) forbids X € X using a type
system based on “levels”.
Church (1930) invents the untyped A-calculus as a logic.

True, False, A, ... are A\-terms

{x| P} = Xz.P reM = Mx

inconsistence: R := Az.not (zz) = R R =gnot(RR)

Church’s simply typed A-calculus (1940) forbids x x with a type system.

2. To avoid programming errors.
Classification of type systems:
monomorphic: Each identifier has exactly one type.
polymorphic: An identifier can have multiple types.
static: Type correctness is checked at compile time.

dynamic: Type correctness is checked at run time.

‘ static dynamic
monomorphic | Pascal

polymorphic | ML, Haskell — Lisp, Smalltalk
(C++,) Java

3. To express specifications as types.
Method: dependent types
Example: mod: nat x m:mat — {k |0 <k <m}
Result type depends on the input value
This approach is known as “type theory”.

29

30 CHAPTER 3. TYPED LAMBDA CALCULI

3.1 Simply typed A-calculus (A7)

The simply typed A-calculus is the heart of any typed (functional) programming language. Its
types are built up from base types via the function space constructor according to the following
grammar, where 7 always represents a type:

T = bool] nat | int | | T — T2 | (7')

basic types

Convention: — associates to the right:
T — T2 — T3 = 7'1—>(7'2—>7’3)
Terms:

1. implicitly typed: terms as in the pure untyped A-calculus, but each variable has a unique
(implicit) type.

2. explicitly typed terms: t u= x| (t1t2) | A7t

In both cases these are so-called “raw” typed terms, which are not necessarily type-correct, e.g.
Az :int.(x x).

3.1.1 Type checking for explicitly typed terms

The goal is the derivation of statements of the form I' - ¢ : 7, i.e. ¢ has the type 7 in the context
I'. Here I" has a finite function from variables to types. Notation: [z} : 71,...,2p : 7). The
notation I'[z : 7] means to override I" by the mapping = — 7. Formally:

T ife=y

Tl D0 = { Ty mormne

Type checking rules:
I'(x) is defined

'kz:T(z) (Var)
Ple:7|Ht: 7
F'Xe:rt:7— 71

I'bHt1:m = m I'kty:m
Fl—(tltg)ZTQ

(App) (Abs)

Examples:

e A simple derivation:
Fz:7|Fa:7
I'tXe:r7x:7—>71

e Not every term has a type. There are no context I and types 7 and 7/ such that I' - Az :
7.(z x) : 7, because

T=T7T9 —T1 T =T

lr:7lFe:mn—mn Tr:7lFz:n

Dlz:7|F(zx):7 T=7—>m7
X7 (zax): 7

= Contradiction: =3m, 70 : 70 — T = T2

3.1. SIMPLY TYPED X\-CALCULUS (A7) 31

The type checking rules constitute an algorithm for type checking by applying them backwards
as in Prolog. In a functional style this becomes a function type that takes a context and a term
and computes the type of the term or fails:

type I x = I'(z)
type I' (t1 ta) = let i =typel' th
o =type I ty
in case 71 of
7 —= 7 = if 7 = 75 then 7’ else fail
| - = fail
typeI' Az :7t) = 7—type (Llx:7])t

Definition 3.1.1. ¢ is type-correct (with regard to I'), if there exists 7 such that T'F ¢ : 7.

Lemma 3.1.2. The type of a type-correct term is uniquely determined (with respect to a fized
context I").

This follows because there is exactly one rule for each syntactic form of term: the rules are
syntaz-directed. Hence we are dealing with a monomorphic type system.

Lemma 3.1.3. Each subterm of a type-correct term is type-correct.

This is obvious from the rules.
The subject reduction theorem tells us that S-reduction preserves the type of a term. This
means that the reduction of a well-typed term cannot lead to a runtime type error.

Theorem 3.1.4 (Subject reduction). I'¢:7 At =gt = I'Ht' 7
This does not hold for S-expansion:
[z:int,y:7T]Fy:T

and
y:7 <35 (Az:bool.y)x

but: (Az:bool.y) z is not type-correct!
Theorem 3.1.5. —3 (—,;,—3y) over type-correct terms is confluent.
This does not hold for all raw terms:

Az :int.x

/B
\n Ay : bool.y

Theorem 3.1.6. — 3 terminates over type-correct terms.

Az :int.(A\y : bool.y) x

The proof is discussed in Section 3.2. A vague intuition is that the type system forbids
self-application and thus recursion. This has the following positive consequence:

Corollary 3.1.7. =g is decidable for type-correct terms.

But there are type-correct terms s, such that the shortest reduction of s into a normal form
has the length

2
22"
—
size of s
However, these pathological examples are very rare in practice.
The negative consequence of Theorem 3.1.6 is the following:

32 CHAPTER 3. TYPED LAMBDA CALCULI

Corollary 3.1.8. Not all computable functions can be represented as type-correct A7 -terms.

In fact, only polynomials + case distinction can be represented in A 7.
Question: Why are typed functional languages still Turing complete?

Theorem 3.1.9. Let Y; be a family of constants of type (T — 7) — T that reduce like fized-point
combinators: Y.t — t(Y; t). Then every computable function can be represented as a closed
type-correct X~ -term which contains as its only constants the Y;.

Proof sketch:

1. Values of basic types (booleans, natural numbers, etc) are representable by type-correct
A~ -terms.

2. Recursion with Y

3.2 Termination of —3

The proof in this section is based heavily on the combinatorial proof of Loader [Loa98]. A more
general proof, which goes back to Tate, can also be found in Loader’s notes or in the standard
literature [HS86, GLT90, Han04].

For simplicity, we work with implicitly typed or even untyped terms.

Definition 3.2.1. Let ¢t be an arbitrary A-term. We say that ¢ diverges (with regard to —g)
if and only if there exists an infinite reduction sequence t —g t1 —g to —g ---. We say that ¢
terminates (with regard to —3) and write t| if and only if ¢ does not diverge.

We first define a subset T' of untyped A-terms:

reT rls/z]s1...sn €T seT

TlyeeoyTn €T)
Ax.reT (Axr)ssy...sp €T

xry...rpn €T

(Var) (8)

Lemma 3.2.2. teT =t|

Proof By induction on derivation of t € T' (“rule induction”).

(Var) (zry...r,){ follows directly from r1l}, ..., r,{, since z is a variable.

(A) (Az.r){ directly follows from rJ}.

(B) Because of LH. (r[s/x]s1...sn), 7l and s;d}, i =1,...,n. If (Ax.r)ssy...s, diverged,
there would have to exist the infinite reduction sequence of the following form:

(Az.r)sst...sn =5 \wr')s'sy...s, =g r'[s'/x]s).. 8, =g

since r, s (by LH.) and all s; terminate. However, r[s/z]s1...s, =} r'[s'/x] 5] ... 5], also holds.
This contradicts the termination of r[s/x] sy ...s,. Therefore (Az.r)ssj...s, cannot diverge.
O

One can also show the converse. Thus T' contains exactly the terminating terms.

Now we shall show that T is closed under substitution and application of type-correct terms.
This is done by induction on the types. As we work with implicitly typed terms, the context I
disappears. We simply write ¢ : 7.

We call a type 7 applicative if and only if for all ¢, » and o, the following holds.

t:tr—>o r:7 tel reT
treT

We call 7 substitutive if and only if for all s, r and o, the following holds.

s:oc r:17 x:1 s€T reT
sir/z] e T

3.3. TYPE INFERENCE FOR X\~ 33

Lemma 3.2.3. Fvery substitutive type is applicative.

Proof Let 7 be substitutive. We show that 7 is applicative by induction on the derivation
ofteT.

(Var) If t=xry...rp and all 7; € T, then tr = zr;...r,r € T follows with (Var) since
r € T by assumption.

(A) If t = Az.s and s € T, then s[r/z] € T holds since 7 is substitutive. Therefore
tr = (Az.s)r € T follows with (/) since r € T' by assumption.

B)Ift=(A\zr)ssy...spand r[s/z]s1...s, € T and s € T, then by LH. r[s/x] s1...s,7 €
T holds. Since s € T, tr = (Az.r)ss1...s,7 € T follows with (/). O

Lemma 3.2.4. Let T =1 — -+ — 7, — T, where 7' is not a function type. If all 7; are
applicative, then T is substitutive.

Proof by induction on the derivation of s € T'.

(Var) If s = ysy...s, and all s; € T, then s;[r/x] € T holds by IL.H., i = 1,...,n. If
x # y, then s[r/z] = y(s1[r/x])...(sn[r/z]) € T by (Var). If x = y, then y : 7 holds, and
therefore s; : 7;, and s;[r/x] : 7, i = 1,...,n as well. Since all 7; are applicative, s[r/x] =
r(si[r/z]) ... (sp[r/x]) € T holds.

(A) If s = Ay.u where u € T', then by LH. u[r/z] € T. From this, s[r/z] = Ay.(u[r/z]) € T
follows by (A).

(B) If s = (A\y.u)sos1...5n by u[so/y]s1...sn € T and sp € T, then s[r/z] = (A\y.(ulr/x]))
(solr/x])...(sn[r/z]) € T follows by (B) since u[r/xz][so[r/x]/y](s1[r/z]) ... (sn[r/z])
= (u[so/y]s1...8p)[r/x] € T and so[r/z] € T by L.H. O

Exercise 3.2.5. Show that for type-correct s and ¢ the following holds: if s € T and t € T
then (st) e T.

Theorem 3.2.6. Ift is type-correct, then t € T holds.

Proof by induction on the derivation of the type of t. If ¢ is a variable, then ¢ € T holds by
(Var). If t = Ax.r, then t € T follows by () from the IL.H. r € T. If t = r s, then ¢t € T follows
by exercise 3.2.5 from the LH. r € T and s € T'. O

Theorem 3.1.6 is just a corollary of Theorem 3.2.6 and Lemma 3.2.2.

3.3 Type inference for \™

Types: T = Dbool|int]... basic types
la| By .. type variables
| T — T2

Terms: untyped A-terms

Type inference rules:

Tt :m =7 I'Fty:m Plz:m|kFt:n
Fl—(tl tg):TQ Fl—(/\l’.t)ZTl—>T2

F'Fa:T(x)

Terms can have distinct types (polymorphism):

AL.T a— «

AT.T : int — int

34 CHAPTER 3. TYPED LAMBDA CALCULI

Definition 3.3.1. 71 2 7o :< 3 Substitution 6 (of types for type variable) with 71 = 0(72)
(“ry is more general than or equivalent to 71.”)

Example:
int »int 2 a—oa 2 [f—oF 2 a—«

Every type-correct term has a most general type:

Theorem 3.3.2. '+t:7 = Fo.T'Ht:0c AVITHt: 7 = 720

Proof idea: Consider rules as a Prolog program that compute the type from the term. Given
the term, the rules are deterministic, i.e. at most one rule is applicable at any point. Hence
there is at most one type. Because rule application uses unification, it computes the most
general type (via the most general unifier).

Example, using Roman instead of Greek letters as type variables:

Xz y.(yz): A
if [z:BJFAy.(yz):Cand A=B—C
if [z:B,y:D]F(yz):EFandC=D — FE
if [x:B,y:DjFy:F—FE and [z:B,y:D]Fa:F
it D=F—F and B=F

Therefore: A=B—-C=F—(D—FE)=F— (F—-FE)—E)

3.4 let-polymorphism

Terms:
t o= x| (t1t2) | A\et | let o =1t in to

The intended meaning of let x = t; in {9 is t2[t;/x]. The meaning of a term with multiple
lets is uniquely defined because of termination and confluence of —3. We will now examine
type inference in the presence of let.

Example:
let f=Ar.x in Dpair (f0) (f true)
— ~—— ——
fiVa.ag—«q f:7[int/a] f: 7[bool/q]
P4
Note

e V-quantified type variables can be replaced by arbitrary types.

e Although (Af.pair (f 0) (f true)) (Az.z) is semantically equivalent to the above let-term,
it is not type-correct, because A-bound variables do not have V-quantified types.

The grammar for types remains unchanged as in Section 3.3 but we add a new category of type
schemas (o):
o = VYao | T

Any type is a type schema. In general, type schemas are of the form Vo ... Va,.7, compactly
written Vagq ... ay,.T.

Example of type schemas are «a, int, Va.a — « and Va3.a — 3. Note that (Va.ao — o) —
bool is not a type schema because the universal quantifier occurs inside a type.

3.4. LET-POLYMORPHISM 35
The type inference rules now work with a context that associates type schemas with variable
names: ['is of the form [z1 : 01,..., 2y, : op]:

'az:I(z) (Var)

I'bFti1:m—71 I'Fity:m
Tk (titg): 7

(App)

Plz:m]kFt:m
F'E(A\zt):m — 7

(Abs)

Tt :0 Dz :o1]Fte:oy
I'blet x =t inty: o9

(Let)

Note that A\-bound variables have types (7), Let-bound variables have type schemas (o).
Then there are the quantifier rules:

L't:o[r/al
I'Ft:o .
TFi VYoo (VIntro) if a ¢ FV(I)

where FV ([z1: 01,...,2y 2 0p)]) = Ui, FV(03) and FV (Vo ... ap.7) = Var(r) \ {ai1,...,oan}
and Var(7) is the set of all type variables in 7.
Why does (VIntro) need the condition o ¢ FV(I')?
Logic: r=0Fz=0# z2=0FVzx =0
Programming: Az.let y = in y + (y 1) should not be type-correct.
But this term has a type if we drop the side-condition:

[z:a]Fx:a

VInt ‘
(VIntro) [y :Va.alFy+(y1):int

[t:alFlety=xziny+(y1):int

[z:a]Fx: Voo

Arlety=ziny+ (y1l):a— int

Problem: The rules do not provide any algorithm, since quantifier rules are not syntax-directed,
i.e. they are (almost) always applicable.

Solution: Integrate (VElim) with (Var) and (VIntro) with (Let):

I'z) =VYay...0p.7T

Ckax:7[n/al,...,m/am) (Var)

F'Ht:7 Dz :Vay...on. 7] Fty: 1
I'Fletx =t inty : 7™

(Let)) {on,...,an}t = FV(r)\ FV(I)

(Var) and (Let) are replaced by (Var’) and (Let’), respectively. (App) and (Abs) remain un-
changed. (VIntro) and (VElim) disappear: The resulting system has four syntax-directed rules.
Note: Type schemas occur only in T

36 CHAPTER 3. TYPED LAMBDA CALCULI

Example:
D=Fx«FE F=A
bp:F—»(E—D) I"ta:F o=F G=Axint H =int
I'tpx:E— D I'Fz2:E B=AxQG IM"+y:H—-G T"F1:H
I't(pz)z:D I"+y:G— B I"rFyl:G
Nz :AlFXzpxz:C—D I'Mry(yl): B

Iz:AlFlety=Xzpxziny(y1l): B
I'=[1:int,p:Va,f.a = — (a*xp)]|FA\r.lety=Azpzrziny(y1): A— B

(where IV =Tz : A,z : Cland I =Tz : A,y : VC.C — A% C])
= B=Ax(Axint)
Proof of the equivalence of two systems: Each derivation tree with explicit quantifier rules can

be transformed in such a way that (VElim) is found only under the (Var)-rules and (VIntro)
only in the left premise of the (let)-rule.

Complexity of type inference:

e without let: linear

e with let: DEXPTIME-complete (Types can grow exponentially with the size of the terms.)
Example:

let xo = \y.Az.2 9y ¥y
in let 1 = \y.zo (20 ¥)
in ...

let Tnyl =)\yl'n (xn y)
in Tp11 (Az.2)

Chapter 4

The Curry-Howard Isomorphismus

typed A-calculus (A7)

constructive logic (intuitionistic propositional logic)

Types: 7 = «|f|vy]|...|T =7 Formulas: A == P|Q|R|... |[A—A
—_——
propositional variable
PHt:r I'FA (I: set of formulas)
'ttiim—mn I'Ety:m 'rA—-B TFA :
A
'+ (tl tQ) t T (pp) I'-B (_> Ehm)
Plx:n]kt:m INA- B

TFacdim o AP FFAp (o)
'z :D(z)if I'(z) is defined r-AifAel
type-correct A\-terms proofs

o [zl a A A
Example: Flz.z:a— « FA—- A

The A-term encodes the skelton of the proof.

This derivation is represented in a compact manner
by Az.z and can be reconstructed by type inference.

Proofs where the first premise of —Elim is proved by —Intro can be reduced:

z:BrFz:B x:BtFx:B

11

(—Intro)

(—Elim) 'FXxs:B—-A TI'+t: B

' (Az.s)t: A

Proof reduction = Lemma-elimination

I'z:BkFs: A N

IEsft/x]: A

Correctness follows from subject reduction: types are invariant under S-reduction.

37

38 CHAPTER 4. THE CURRY-HOWARD ISOMORPHISMUS

Example:
(A-A)—-B—-C)-(A—-A)—-B)—-C = ¢
N——
a’ Y

Two proofs:

Az y.(Ad .z d (yad)) (Na.a): ¢ proof by lemma A — A
— A y.x (Aa.a) (y (Aa.a)) : ¢ proof in normal form

Definition 4.0.1. A proof is in normal form if the corresponding A-term is in normal form.

A proof is in normal form if and only if no part of the proof has the following form.

(— Intro)

(— Elim)

The following lemma follows directly.

Lemma 4.0.2. A proof in normal form, which ends with (—Elim), has to have the following
form.:

'FA4,— A A,
r-A

(—Elim)

where the subtree T has the following form:

(=Flim) assumption-rule N\

'-4, —...— A4, — A '+ A,

F"An,1—>(An—>A) F"An,1
I'+A4,— A

(—Elim)

In the sequel note that every formula is a subformula of itself.
Theorem 4.0.3. In a proof of I' = A in normal form, only subformulas of I' and A occur.
Proof: by induction on the derivation of " - A.

1. ' A with A € T": obvious

2.

39

N

A F As

(—)Intro) m

Induction hypothesis: only subformulas of I'; A1 and Ao occur in 7T'.

Hence the assertion follows immediately.

3. See (x) above.
Because of assumption-rule: A7 —+ Ay — ... > A, > A€Tl.
Ind. hyp. for Ti: in T} only subformulas of I', A,, = in T} only subformulas of T".
Ind. hyp. for T: in T only subformulas of I', A,, —+ A = in T only subformulas of T".

Therefore, in the whole tree only subformulas of I'. O
Theorem 4.0.4. I' - A is decidable.

The proof is the following algorithm:

Finite search for proof tree in normal form (always exists, since —g terminates for
type-correct terms) by building up from the root to the leaves. As long as the tree is
complete, choose unproven leaf:

If ' A with A € T, then proof by assumption rule.

Otherwise cycle test: does the leaf already occur on the path to the root?

If yes: backtrack to and modify most recent choice in this subtree.

Otherwise use (—Intro) (premise is uniquely determined) or

THA, > A TFA,
T A

(— Elim)

so that Ay — --- A, — A €T (finite choice).

This algorithm terminates because of the following two reasons. First, the root has
only a finite number of subformulas and above the root only these subformulas occur
(by construction), i.e. there are only a finite number of IV = A’ which can appear above
the root (the context is a set, i.e. no duplicates). Second, cycles are detected. g

Example:

'FP—+Q—R THP '-P—>Q I+P

'cQ—R TFQ
I''=P—-Q—-R,P—-Q,PFR

F(P—-Q—R) - (P—-Q) —-P—R

(— Elim) (— Elim)
(— Elim)

3 times (— Intro)

Peirce’s law ((P — @) — P) — P is not provable in intuitionistic logic. Note that - ¢ is
never provable by (— Elim) because that would require a formula A; — --- — A,, — ¢ in the
context but the context is empty. Hence we try proof by (— Intro):

'-A,—-P T'HA,

r=P-Q)—>PFP
F(P—-Q)—P)—=P

(— Elim)
(— Intro)

40 CHAPTER 4. THE CURRY-HOWARD ISOMORPHISMUS

with A4y - -+ > A, > Pl = n=1and A, = P — Q. Consider I' - P — Q.
The derivation cannot be done by (Elim), because I' does not contain any formula of the form
-+ — (P — Q). Hence:
rpP+-B,—-Q I',P+FB,
IPFQ
r-P—-q@

— (Elim)
— (Intro)

with By — .-+ — B, — Q € I', P — but such a formula is not found in I' and P. Thus Peirce’s
law is not provable.

Note that Peirce’s law is a tautologie in classical two-valued propositional logic. Therefore
constructive logic is incomplete with regard to two-valued models. There are alternative, more
complicated notions of models for intuitinistic logic. The decision problem if a propositional
formula is a tautology is NP-complete for classical two-valued logic but PSPACE-complete for
intuitionistic logic.

Exercise 4.0.5. Prove - ((((p — q¢) > p) = p) = q) — q.

Here are two examples that go beyond propositional logic but illustrate the fundamental
difference between constructive and not-constructive proofs:

1. Vk > 8.dm,n. k =3m+ 5n
Proof: by induction on k.
Base case: k=8 = (m,n) = (1,1)
Step: Assume k = 3m + 5n (induction hypothesis)
Case distinction:
1.n#0 = k+1=(m+2)*3+(n—1)%5
2n=0=m>3=k+1=(m—-3)*3+(n+2)%5 O

Corresponding algorithm:

f:IN28—>IN><]N

f(8) = (1,1)
f(k+1) = 1et (m,n) = f(k)
in if n # 0 then (m+2,n — 1) else (m —3,n + 2)

2. Jirrational a,b. a® is rational.

Case distinction:
1. \/i‘/§ rational = a = b = /2
2. \/i‘/§ irrational = a = \/i‘/ﬁ,b: V2 = ab=+v2%2=2

Classification:
Question Types Formulas
t:7 7 (t explicitly typed) Does t have the type 7 7 Is ¢ a correct proof of formula 7 7
drit T type inference What does the proof ¢ prove?

dtt:T program synthesis proof search

Appendix A

Relational Basics

A.1 Notation

In the following,— C A x A is an arbitrary binary relation over a set A. Instead of (a,b) € —
we write a — b.

Definition A.1.1.

TSy & royVr=y (reflexive closure)

Ty & r—o>yVy—ro (symmetric closure)

xiy & dT1,. LTy T=T] DX > Ty =Y

t 5y e In>0.20y (transitive closure)

rSy o >0y (reflexive and transitive closure)
rSy e z(o)'y (reflexive, transitive and symmetric closure)

Definition A.1.2. An element ¢ is in normal form wrt. — if these does not exists any b
that satisfies a — b.

A.2 Confluence

Definition A.2.1. A relation —

is confluent, if z >y Az Sy = Fz. 91 =2 A 4o — 2.

is locally confluent, if z — y; Az — 1y = Jz.y1 = 2 A ys — 2.

has the diamond-property, ifx -y Az =y = Jz.y1 > 2z A y2 — 2.

*
T —>1U1 T —>1U1 T ——>1U1
i . i . l |
x Vv x V \
Y - - >z Y2 - - >z Y2 - - >z
confluence local confluence the diamond-property

Figure A.1: Sketch of Definition A.2.1

41

42 APPENDIX A. RELATIONAL BASICS

Fact A.2.2. If — is confluent, then every element has at most one normal form.

Lemma A.2.3 (Newmann’s Lemma). If — is locally confluent and terminating, then — is also

confluent.

Proof: by contradiction

Assumption: — is not confluent, i.e. there is an z with two distinct normal forms nq
and ny. We show: If x has two distinct normal forms, x has a direct successor with

two distinct normal forms. This is a contradiction to “— terminates”.

y1/ \yz
RN RN

/
/ \-/ *\
/ |, N
nl/ i \nz

1. n # ny: y1 has two distinct normal forms.
2. n # ngy: yo has two distinct normal forms.

Example of a locally confluent, but not confluent relation:

Lemma A.2.4. If — has the diamond-property, then — is also confluent.

Proof: see the following sketch:

° ° °
v \
o - - >0 - ->- --> e
\ \
\ \
o -->0 - ->. -- > e

0

Lemma A.2.5. Let — and > be binary relations with — C > C =, Then — is confluent if >

has the diamond-property.

A.2. CONFLUENCE 43

Proof:

1. Because * is monotone and idempotent, — C > C = implies B C>*C (i>)* = 3, and
thus = = >*.

2. > has the diamond property

> is confluent (Lemma A.2.4)

>* has the diamond property

% has the diamond property

— is confluent. O

ooy

Definition A.2.6. A relation — C A x A has the Church-Rosser property if
adb e JeaScdb

Theorem A.2.7. A relation — is confluent iff it has the Church-Rosser property.
Proof:

“<": obvious
(L:>77 :

lLLaScdb=adb

2. a+b:

*
e — >
*j/ *
* x Vv
eo— >0 - ->0
*j/ * *
* * ‘ x VvV
e— >0 -->0 -->0
*j/ kX % *
x Vo ox Vo4 V
@ -->e -->e -->c

Corollary A.2.8. If — is confluent and if a and b have the normal form al and bl, then the
following holds:
as>b & al=0b)

Proof:

< : obvious

=
*
@ b
| K] ~ c 4 (K] | [K]: confluence of —
VAR [CR]: The Church-Rosser property of —
(K]

44 APPENDIX A. RELATIONAL BASICS

A.3 Commuting relations
Definition A.3.1. Let —1 and —9 be arbitrary relations. —; and —9 commute if for all
s,t1,to the following holds:

(s—>1t1/\s—>2t2):>3u.(t1 —o U Nty —1 u)

e —— 0

1 |
2 12
v

e - ->0
1

Lemma A.3.2 (Hindley/Rosen). If —1 and —o are confluent, and if 51 and 5o commute,
then —19 := —1 U —9 is also confluent.

Proof:
* * *
[[[] []
1 | 2 | 1)
«|2 [Km|] #2 [Kf] .2 [Km] =*.2
« Y . V.V
® - ----- >0 ------ >0 ------ > e
]. ! 2 | 1 |
«[1 [Kf] #1 [Km] *1 [Kf] *.1
s« V. V.V
® ------ >0 ------ >e ------ > e
1 2 1
[Kf]: —1 or rather —9 is confluent.
[Km]: —1 and —9 commute. O
Lemma A.3.3.
o — o
1 ‘
2 %12 * *
_ v = —1 and —9 commute.
e - -->e
1
Proof:
s ° t
1 1 1
2 * (2
[] ; []
1
2 * |2 * |2
[; []
1
2 * |2
1 1 1

Formally: use an induction first on the length of s —7 ¢, and then use an induction on the

length of s =3 u.

Bibliography

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and Semantics. North-
Holland, 2nd edition, 1984.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[Han04] Chris Hankin. An Introduction to Lambda Calculi for Computer Scientists. King’s
College Publications, 2004.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and A-Calculus.
Cambridge University Press, 1986.

[Loa98] Ralph Loader. Notes on simply typed lambda calculus. Technical Report ECS-LFCS-
98-381, Department of Computer Science, University of Edinburgh, 1998.

45

