
Motivating Examples

Equational reasoning is concerned with a rather restricted class of first-order lan-
guages: the only predicate symbol is equality. It is, however, at the heart of many
problems in mathematics and computer science, which explains why developing spe-
cialized methods and tools for this type of reasoning is very popular and important.
For example, in mathematics one often defines classes of algebras (such as groups,
rings, etc.) by giving defining identities (which state associativity of the group op-
eration, etc.). In this context, it is important to know which other identities can
be derived from the defining ones. In algebraic specification, new operations are
defined from given ones by stating characteristic identities that must hold for the
defined operations. As a special case we have functional programs where functions
are defined by recursion equations.

For example, assume that we want to define addition of natural numbers using
the constant 0 and the successor function s. This can be done with the identities1

x + 0 ≈ x,

x + s(y) ≈ s(x + y).

By applying these identities, we can calculate the sum of 1 (encoded as s(0)) and 2
(encoded as s(s(0))):

s(0) + s(s(0)) ≈ s(s(0) + s(0)) ≈ s(s(s(0)) + 0) ≈ s(s(s(0))).

In this calculation, we have interpreted the identities as rewrite rules that tell us
how a subterm of a given term can be replaced by another term.

This brings us to one of the key notions of this book, namely term rewriting
systems. What do we mean by terms? They are built from variables, con-
stant symbols, and function symbols. In the above example, “+” is a binary
function symbol, “s” is a unary function symbol, 0 is a constant symbol, and x, y
are variables. Examples of terms over these symbols are 0, x, s(s(0)), x + s(0),
s(s(s(0)) + 0). In our example calculation, we have used the identities only from
left to right, but in general, identities can be applied in both directions.

In the following, we give two examples that illustrate some of the key issues
arising in connection with identities and rewrite systems, and which will be treated
in detail in this book. In the first example, the rewrite rules are intended to be used
only in one direction (which is expressed by writing → instead of ≈). This is an
instance of rewriting as a computation mechanism. In the second, we consider the
identities defining groups, which are intended to be used in both directions. This is
an instance of rewriting as a deduction mechanism.

Symbolic Differentiation

We consider symbolic differentiation of arithmetic expressions that are built with
the operations +, ∗, the indeterminates X,Y , and the numbers 0, 1. For example,
((X + X) ∗ Y ) + 1 is an admissible expression. These expressions can be viewed
as terms that are built from the constant symbols 0, 1, X, and Y , and the binary
function symbols + and ∗. For the partial derivative with respect to X, we introduce
the additional (unary) function symbol DX . The following rules are (some of the)

1We use ≈ for identities to make a clear distinction between the object level sign for identity
and our use of = for equality on the meta-level.

1



well-known rules for computing the derivative:

(R1) DX(X) → 1,
(R2) DX(Y ) → 0,
(R3) DX(u + v) → DX(u) + DX(v),
(R4) DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v).

The symbols u and v are variables in terms like DX(u + v), with the intended
meaning that they can be replaced by arbitrary expressions.2 Thus, rule (R3) can
be applied to terms having the same pattern as the left-hand side, i.e., a DX followed
by a +-expression.

Starting with the term DX(X ∗ X), the rules (R1)–(R4) lead to the possible
reductions depicted in Fig. 1. We can use this example to illustrate two of the most

DX(X ∗X)

?
R4

(X ∗DX(X)) + (DX(X) ∗X)

�
�
�	

R1

(X ∗ 1) + (DX(X) ∗X)

@
@
@R

R1

(X ∗DX(X)) + (1 ∗X)

@
@
@R

R1
�
�
�	

R1

(X ∗ 1) + (1 ∗X)

Figure 1: Symbolic differentiation of the expression DX(X ∗X).

important properties of term rewriting systems:

Termination: Is it always the case that after finitely many rule applications we
reach an expression to which no more rules apply? Such an expression is then
called a normal form.

For the rules (R1)–(R4) this is the case. It is, however, not completely trivial
to show this. In fact, rule (R4) leads to a considerable increase in the size of
the expression.

An example of a non-terminating rule is

u + v → v + u,

which expresses commutativity of addition. The sequence (X ∗1) + (1∗X)→
(1 ∗ X) + (X ∗ 1) → (X ∗ 1) + (1 ∗ X) → . . . is an example for an infinite
chain of applications of this rule. Of course, non-termination need not always
be caused by a single rule; it could also result from the interaction of several
rules.

Confluence: If there are different ways of applying rules to a given term t, leading
to different derived terms t1 and t2, can t1 and t2 be joined, i.e., can we always

2These variables should not be confused with the indeterminates X,Y of the arithmetic expres-
sions, which are constant symbols.

2



find a common term s that can be reached both from t1 and from t2 by rule
application?

In Fig. 1 this is the case, and more generally, one can show (but how?) that
(R1)–(R4) are confluent. This shows that the symbolic differentiation of a
given expression always leads to the same derivative (i.e., the term to which
no more rules apply), independent of the strategy for applying rules.

If we add the simplification rule

(R5) u + 0→ u

to (R1)–(R4), we lose the confluence property (see Fig. 2).

DX(X + 0)

�
�
�	

R5

DX(X)

@
@
@R

R3

DX(X) +DX(0)

?

R1

1
?

R1

1 +DX(0)

Figure 2: DX(X) and DX(X) + DX(0) cannot be joined.

In our example, non-confluence of (R1)–(R5) can be overcome by adding the rule
DX(0)→ 0. More generally, one can ask whether this is always possible, i.e., can we
always make a non-confluent system confluent by adding implied rules (completion
of term rewriting systems).

Because of their special form, the rules (R1)–(R4) constitute a functional pro-
gram (on the left-hand side, the defined function DX occurs only at the very out-
side). Termination of the rules means that DX is a total function. Confluence of
the rules means that the result of a computation is independent of the evaluation
strategy. Confluence of (R1)–(R4) is not a lucky coincidence. We will prove that
all term rewriting systems that constitute functional programs are confluent.

Group Theory

Let ◦ be a binary function symbol, i be a unary function symbol, e be a constant
symbol, and x, y, z be variable symbols. The class of all groups is defined by the
identities

(G1) (x ◦ y) ◦ z ≈ x ◦ (y ◦ z),
(G2) e ◦ x ≈ x,
(G3) i(x) ◦ x ≈ e,

i.e., a set G equipped with a binary operation ◦, a unary operation i, and containing
an element e, is a group iff the operations satisfy the identities (G1)–(G3). Identity
(G3) states only that for every group element g, the element i(g) is a left-inverse
of g with respect to the left-unit e. The identities (G1)–(G3) can be used to show
that this left-inverse is also a right-inverse. In fact, using these identities, the term
e can be transformed into the term x ◦ i(x):

3



e
G3

≈ i(x ◦ i(x)) ◦ (x ◦ i(x))
G2

≈ i(x ◦ i(x)) ◦ (x ◦ (e ◦ i(x)))
G3

≈ i(x ◦ i(x)) ◦ (x ◦ ((i(x) ◦ x) ◦ i(x)))
G1

≈ i(x ◦ i(x)) ◦ ((x ◦ (i(x) ◦ x)) ◦ i(x))
G1

≈ i(x ◦ i(x)) ◦ (((x ◦ i(x)) ◦ x) ◦ i(x))
G1

≈ i(x ◦ i(x)) ◦ ((x ◦ i(x)) ◦ (x ◦ i(x)))
G1

≈ (i(x ◦ i(x)) ◦ (x ◦ i(x))) ◦ (x ◦ i(x))
G3

≈ e ◦ (x ◦ i(x))
G2

≈ x ◦ i(x).

This example illustrates that it is nontrivial to find such derivations, i.e., to solve
the so-called word problem for sets of identities: given a set of identities E and
two terms s and t, is it possible to transform the term s into the term t, using the
identities in E as rewrite rules that can be applied in both directions?

One possible way of approaching this problem is to consider the identities as
uni-directional rewrite rules:

(RG1) (x ◦ y) ◦ z → x ◦ (y ◦ z),
(RG2) e ◦ x → x,
(RG3) i(x) ◦ x → e.

The basic idea is that the identities are only applied in the direction that “simplifies”
a given term. One is now looking for normal forms, i.e., terms to which no more
rules apply. In order to decide whether the terms s and t are equivalent (i.e., can be
transformed into each other by applying identities in both directions), we use the
uni-directional rewrite rules to reduce s to a normal form ŝ and t to a normal form
t̂. Then we check whether ŝ and t̂ are syntactically equal. There are, however, two
problems that must be overcome before this method for deciding the word problem
can be applied:

• Equivalent terms can have distinct normal forms. In our example, both x◦i(x)
and e are normal forms with respect to (RG1)–(RG3), and we have shown
that they are equivalent. However, the above method for deciding the word
problem would fail because it would find that the normal forms of x◦ i(x) and
e are distinct.

• Normal forms need not exist: the process of reducing a term may lead to an
infinite chain of rule applications.

We will see that termination and confluence are the important properties that ensure
existence and uniqueness of normal forms. If a given set of identities leads to a non-
confluent rewrite system, we do not have to give up. We can again apply the idea of
completion to extend the rewrite system to a confluent one. In the case of groups,
a confluent and terminating extension of (RG1)–(RG3) exists.

4


