5

Theorem Proving in Arithmetic without
Multiplication

D. C. Cooper

Department of Computer Science
University College of Swansea

INTRODUCTION

A considerable amount of effort has been expended in the last ten years in
the field known as ‘mechanical theorem proving’. Original motivation in
this area was primarily the attempt to prove interesting theorems in mathe-
matics although applications in other areas were considered — see, for
example, McCarthy (1958), where application to more general problem
solving is made, and W.S.Cooper (1964), where the need for a theorem
proving system in information retrieval was considered. More recently
other areas have arisen such as robotology, automatic program construction
and proofs of correctness of programs. Most work has been done in the first
order predicate calculus, but at various times pleas have been made not only
for general theorem provers but also for efficient provers in restricted areas.
One such is presented in this paper.

In Cooper (1971) a set of programs was described to aid the proving of the
convergence and correctness of programs. Part of this package was a theorem
prover for the logical system consisting of the integers, integer variables,
addition, the usual arithmetical relations and the usual first order logical
connectives. This system is commonly referred to as Presburger arithmetic —
see Presburger (1929), where a similar system involving only the equality
relation was proved decidable. Whilst in such a system one can only state
rather simple theorems, yet an efficient algorithm to test for the validity of
such formulas is useful in that it can quickly dispose of a host of the simpler
formulas arising in some application, leaving only the more complex to be
dealt with by some more general theorem prover or by the human. However,
the present known algorithm proved impractical even on the formulas
produced by the simple program in that paper, due to exponential growth.
In this paper we investigate this growth and give a new algorithm which
completely eliminates one factor in the growth and considerably mitigates

91

COMPUTATIONAL LOGIC

another. It is possible that decision procedures in other areas could be related
to that for Presburger arithmetic, thus providing another outlet for the
algorithm. One such area is the equivalence of certain special program
schemas — see section 4 of Paterson (1972).

THE LOGICAL SYSTEM

A formula of the system is formed from algebraic expressions (only allowing
variables, integer constants and addition), the binary relation <, the proposi-
tional calculus logical connectives and quantification. The domain is that of
positive and negative integers, and formulas of the system take their usual
meaning. The other arithmetic relations may easily be added — for example
a>b can be defined as b<a+1 and a=b as a<b+1Ab<a+1 - although it
could well lead to a more efficient algorithm if equality were included in the
basic system. Subtraction can be allowed: a—b>c is a>c+b. The major
omission is multiplication, although multiplication by a constant can be
included: 3*a is a+a+a. Such a system is known to be decidable. Examples
of simple formulas in the system are:
(Va)(Vb)(3x)(a<20x A20x<b)

and (Va)(3b)(a<4db+3av(tia<bra>b+1))

For the technique to be used in the decision procedure it is essential to
introduce another relation, even though that relation is definable in the system.
This relation can be taken to be 5|« (« is exactly divisible by §) where o is a
term but 6 must be an integer. This relation can be defined as (3x)(a =4 * x),
assuming x does not occur free in a.

THE PRESENT ALGORITHM

Decision algorithms for this system are well known — see, for example,
Hilbert and Bernays (1968), or Kreisel and Krivine (1967). These are based
on the method known as ‘elimination of quantifiers’. Clearly if, given a
formula (3x)F where F is quantifier free, we can construct an equivalent
quantifier-free formula G then we have a decision algorithm: first, close the
formula by universally quantifying all free variables, then eliminate quanti-
fiers from the inside thus obtaining a formula without variables which may
be evaluated to true or false. Universal quantifiers may be replaced by
existential quantifiers — use (Vx) F= —1(3x) -1 F - and our basic task is there-
fore the elimination of a quantifier from a formula of the form (dx) F where
F is quantifier free but may involve x and other variables. This may be
accomplished as follows:
Step 1
Transform F to disjunctive normal form and distribute the quantifier over
the disjuncts. As a result we have a number of separate eliminations to per-
form in each of which Fis a conjunct of relations or the negation of relations.
Step 2

-1
Eliminate negation by using -a<p is f<a+1 and =1 (J]«) is V»5!a+i.

i=1
92

COOPER

Step 3
Simplify each relation by collecting the x-terms so that each relation either
does not involve x (in which case take it outside the quantifier) or is one of
Ax<a,
Bi<wmix
&;lvix+y,, :
where 4;, p;, v; and §; are positive integers and o;, B;, y; are expressions not
involving x.
Step 4
Let 6 be the L.c.M. of all the 4, y; and v;. By multiplying both sides of all
relations by appropriate constants the coefficient of all x’s may be made J.
Now replace (3x) F(dx) by (3x)(F(x)Ad|x). The result will be a conjunct
of terms as at the end of Step 3 except that now the coefficients of all x’s are
unity.
Step 5
The elimination may now be performed by using a generalisation of the
equivalence:

L)
@x)(a<xAx<pAad|x)=\/(a+j<BArd|at)).
j=1
This generalisation is given in full in Cooper (1971) but it will not be given
here as the new algorithm is both more efficient and more succinct.

FORMULA EXPANSIONS

There are two main sources of expansion which make the above algorithm
unworkable on any but the simplest formulas. First, there is the initial
transformation to disjunctive normal form. In some applications this might
not be troublesome ; however, in the application of Cooper (1971) the formula
produced for the algorithm tended to be long but repetitious, with many
common sub-expressions. The simplest formula (about 100 characters long)
had 55 disjuncts. As the formula was not valid every separate disjunct had
to be proved invalid; the variations were primarily in parts of the disjuncts
not contributing to the inconsistency, so much work was repeated. A computer
program for the algorithm was able to solve this problem, but could not tackle
the other formula (up to about 1000 characters long) in any reasonable
time because of the very large number of disjuncts. The major feature of the
new algorithm is that it is not necessary to have the formula in disjunctive
normal form and a program for this new algorithm quickly disposed of all
cases.

The second source of expansion occurs in Steps 2 and 5 where new disjuncts
are produced whose number of terms depends on the integers occurring in
the formula. This can clearly be disastrous, yet in the old algorithm seems to
be inevitable. The expansion in Step 2 is avoided altogether in the new
algorithm; that in Step 5 remains, but remarks will be made later showing

93

COMPUTATIONAL LOGIC

how the effect can be greatly reduced. It should also be noted that in an
interesting sub-class of formulas (essentially those in which one only has the
successor function, not full addition) the ¢ of the previous formula is always
1 and this expansion does not occur — this was the case in the formulas
occurring in Cooper (1971).

THE NEW ALGORITHM
A new process will now be described for the elimination of an existential
quantifier which does not assume the formula is in disjunctive normal form.

Steps 2, 3 and 4 of the previous algorithm did not use the fact that the
formula was in disjunctive normal form, and these are again performed.
They will not produce any major expansion, apart from the replacement of
—1(d|a)in Step 2, and to avoid this we introduce ,{/ as a basic relation — 5,|’oc
means that « is not exactly divisible by o.

The formula is now of the form (3x)F(x) where F(x) is formed by
conjunction and disjunction (note no negation) of basic relations each of
which is one of the forms:

(A) x<a;

(B) b;<x

(€) 6;lx+c;

(D) ei* X +dl s
where a;, b;, ¢; and d; are expressions not involving x, and §;, ¢; are positive
integers.

Let 6.be the L.c.M. of all J;, ¢; and define F__(x) to be F(x) with true
substituted for all formulas of type (A) and false substituted for all formulas of
type (B). Clearly, we have:

Lemma. For x sufficiently small F(x)=F__(x)
The following theorem then enables the elimination of the quantifier:

Theorem. With notation and restrictions as above
o

o
@)F)=\/F-a()v\/\/ F(bi+i)
j=1 J=1 b

(the second term on the right hand side is omitted if there are no formulas
of type (B)).
Proof of theorem. Assume the right hand side is true. Then one of the dis-
juncts must be true; if it is one of the second term then an x has been found;
if F_,,(j)is true for some j then, by the definition of F__, F__ (j)=F_.,(j—Ad)
for any integer 4, and if A is sufficiently large then F__(j—Ad)=F(j—Ad) by
the lemma. In either case the left-hand side is true.

Assume the left-hand side is true and let x; be such that F(xo) is true.

Suppose xp is of the form b;+; for some b; and for some j with 1<j<4.
Then one of the disjuncts of the second term on the right-hand side is true,
hence the right-hand side is true.

Suppose x¢ is not of that form, consider F(xo—9). If F(xo—3) is false,

94

COOPER

but F(xp) is true, then at least one basic relation in F of one of the four types
must change from true to false as xo is changed to xo—J (remember that F
does not involve the negation operator). But this is clearly impossible for
relations of types (A), (c) and (D), and moreover could only happen in a
relation of type (B) if b, <xo and "1b;<xo— 6. This latter implies x is of the
form b;+j with 1<j<4, contrary to hypothesis for this case.

We can therefore assume F(xo—9) is true. This argument can be repeated
with xo— replacing xo until either we find an x of the form b;+j (making
one of the second set of disjuncts true) or until we have an x so small that
F(x)=F__(x). By adding a multiple of 5 we will prove one of the first set of
disjuncts true.

The theorem is now proved and may be used in order to eliminate the
quantifier.

PRACTICAL REMARKS ON THE ALGORITHM

If arithmetic relations other than < occur in the formula it is not necessary to
formally eliminate them. The only point of interest in applying the theorem is
to determine what ‘b, would occur if the elimination were to be performed.
Similarly it is not necessary to eliminate negation: for each relation we
determine how many negations control the relation, and if this is an odd
number consider the negation of the relation in determining the b;. Further,
instead of decreasing x by § in the proof, we could increase it, thus obtaining
the theorem

J é
@)F(x)=\/Fo(=pv\/ \/Fa-) .
Jj=1 j=1 a;

where F(x) is F(x) with false substituted for formulas of type (A) and true
for formulas of type (B). Clearly, if there are less ‘a;” than ‘b, one should
use this second approach. These remarks can be summed up as in table 1.
The ‘A set’ and the ‘B set’ are merely the ‘q;” and the ‘b,” from the formulas
of type (A) and type (B), respectively.

Table 1

positive negative
relation A set B set A set B set

1 x<a o - - a—1
2 a<x - o a+1 -
3 x<a a+1 - - o
4 asx - a—1 o -
5 X=0o a+1 a—1 o o
6 XF#o o o a+1 a—1
7 Olx+a - - - -
8 6)(x+oc - - - -

95

COMPUTATIONAL LOGIC

The enlarged algorithm to eliminate the existential quantifier from (Ax)F
becomes
1. Perform Steps 3 and 4 of the old algorithm.
2. For each relation occurring in the new F determine whether it occurs
positively or negatively (i.e. whether if the formula were to be put into
disjunctive normal form it would occur with a negation sign). Add the
appropriate terms to the A set and the B set as indicated in table 1, a dash
indicates no addition has to be made.
3. Depending on whether the A set or the B set is smaller use the appropriate

formula:
P)

é
@)F(x)=\/F-o()v\/ \/F(B+))
Jj= Jj=1 ge
or 1 o
[

o
@)Fx)=\/Fuo(=p)v\/ \/F(a-))
ji=1 j=1 aeA

If the arithmetic relations are not eliminated the definitions of F__ and
F,, must be extended in the obvious way — F_, is obtained from F by substi-
tuting true, false, true, false, false, true for formulas of type 1 to 6 in table 1,
F,, is obtained from F by substituting false, true, false, true, false, true for
formulas of type 1 to 6.

Two further remarks. Whilst it can be disastrous to transform the formula
into disjunctive normal form, yet it is advantageous to distribute existential
quantifiers over disjuncts wherever possible, as this can lead to sub-problems
with smaller values of § and smaller sizes of A sets and B sets. Also, advantage
should be taken of equalities by substituting x=a A P(«) for x=0AP(x)
wherever it occurs, assuming x is the bound variable being eliminated.

THE 8§ EXPANSION

The effect of this can be considerably lessened, at least in an important
subset of formulas. Assume that the closed formula being tested for validity
is in prenex normal form and all the quantifiers are the same, either all
existential or all universal. This includes the interesting case of a formula
with free variables but no quantifiers, as its closure will have all universal
quantifiers at the front. If the quantifiers are universal, the transformation
to existential quantifiers will produce a string of existential quantifiers
(preceded by a negation), and so in either case the quantifiers have to be
eliminated from a formula of the type
(3)61)(3)(2) o (axn)F(xla X25 « 0oy xn)

The steps in the algorithm depend only on the form of the basic relations
(assuming negations have been eliminated) and not at all on the form of F.
Let us therefore rewrite the formula in the form

(axl)(axZ) oo (axn)F(Rl’ RZ, L) Rm) s

96

COOPER

where Rj, . . ., R,, are arithmetical relations involving the variables xy, . . ., x,
and F contams no negations. Each elimination produces an operator of the

form V and as this commutes with the existential quantifier we may carry

on the procedure without formally expanding this disjunct by merely pre-
serving i as a variable. Let us illustrate this process on a simple example with
n=2 and m=3. True and false will be denoted by ¢ and f. Starting with:
(I)(Ix)F(x+5y>1, 13x—y>1, x+2<0) ,
‘replace 13x by x:
(I)(3Ax)[F(x>13—65y, x>y+1, x<—26) A 13| x]
Use the A set to eliminate x:

13
VEnLF@ L, A3 =i] v
i=1

13
\/(EIy)[F(65y>’39+i, y<—=27—1i,i>0)A13]| -26—i]
i=1
Replace 65y by y in the second disjunct:
13

VerFre o= v

i=1

13
\/(EIy)[F(y>39+i, y<—1755-65i,i>0)A13| —26—iA65]|y].
i=1 .
Trivially eliminate the quantifier from the first disjunct and use the B set in
‘the second disjunct to obtain finally:

\/[F(t, t, HA13| —=i] v
i=1

13 65

vV[F(f,t,i>0)/\13|—26—i/\65|j] v

i=1 j=1

13 65
V[F(j>0,66i+j<—1794,i>0)/\13|—26—i/\65|39+i+j].

i=1 j=1

This process is quite general and, starting with

(Ix1)(3x2) ... (3x,) F(Ry, Ro, . ., Ry)
we shall obtain the disjunction of a number of terms each of which is of the
form:

o1 2 on
V'V VIFGuSs. .o S)aklaablana ... adla,] ,

i1=1i=1 in=1
where Sy, . . ., S, are arithmetical relations, a, . . ., a, are algebraic expres-
sions, and 4, ..., 4, are positive integers — all relations and expressions

97

COMPUTATIONAL LOGIC

being within Presburger arithmetic and involving only integers and the
variables iy, . . ., i,

This process only involves a moderate expansion which depends on the
size of the A and B sets.

In order to evaluate each of these logical expressions it is not necessary
to expand the ¢ disjuncts. In the appendix we show how to find the sets of
values of ij,..., i, which satisfy the expression Aj|a;A ... A4d,]a,; the
expansion is then only done over these sets.

Applying this process to the previous examples (in this simple case the
answer can be seen immediately) we get our final form:

F(t, ,)VF(f,t,t)vF(t,f,t)

The original expression is therefore equivalent to this one, only assuming F
contains no negations; moreover no drastic expansions occur in obtaining
this result. Further simplification is often possible, although not in this
example. As F contains no negations we have

F(...f,..)»F(.,t...) ,
and therefore, for example,
F(LLOVE(f,1,1)
can be replaced by
F(f,t,1)

In particular, if F(z, ¢, t) ever occurs, the process may be stopped with
F(t,1t,t) as the answer.

If the prenex normal form contains mixed quantifiers then the process is
more complicated as, for example, (Vy)(3x) F will become, after elimination
of x and transformation of the first quantifier, the disjunct of terms of the

s
form 1 (3y) i/\ - F.
=1

There is now no commuting of operators and the A and B sets will in
general contain a number of members with i as a variable thus making the
size of the sets depend on §. Hand calculation on simple examples suggests
that the method may well still work, but as yet we do not have a simple way
to express the algorithm.

CONCLUDING REMARKS
One way to compare the new algorithm with the old is to regard the original
transformation to disjunctive normal form method as first finding which sets
of truth values of the relations make F true and then testing these required
sets of values to determine if they are consistent; on the other hand, the
new transformation first finds by direct calculation which sets of truth values
for the relations are consistent, and then evaluates F with these consistent
values to see if any make F itself true. With examples of the kind which oc-
curred in Cooper (1971) the second method proves much more efficient, as
well as being simpler to state and understand. Moreover, the independence
of the process on the form of F could lead to an advantage if we had ex-

98

COOPER

amples with the same relations but different F’s, as the above process need
only be performed once.

APPENDIX

We wish to find the sets of values of i, . . ., i, within certain bounds which
make true:

/\Aj Zl'tjkik-l-vj N
j=1 k=1

where u;, v; are integers and A; are positive integers. This can be done by a
method similar to Gaussian elimination using the two easily proved theorems
from the theory of numbers:
Theorem 1
mlax+bAn|ax+p if and only if
mn|dx+bpn+pgm Ad|ab—af
where d=GCD(an,am) and pan+qum=d
(p and q are found as a by-product if Euclid’s algorithm is used to find the
GCD).
Theorem 2
m|ax+b has solutions for x if and only if
d| b, the solutions are x=—p(b/d)+t(m/d) for all integers ¢
where d=GCD(a, m) and d=pa+qgm.

The sets of solutions are found by first using Theorem 1 to reduce the set
of divisibility relations to triangular form and then using Theorem 2 and the
known bounds on the variables to obtain all the solutions by a back substitu-
tion process.

REFERENCES

Cooper, D.C. (1971) Programs for Mechanical Program Verification. Machine Intelli-
gence 6, pp. 43-59 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University
Press.

Cooper, W.S. (1964) Fact Retrieval and Deductive Question-answering information
retrieval systems. J. Ass. Comput. Mach., 11, pp. 117-37.

Hilbert, D. & Bernays, P. (1968) Grundlagen der Mathematik I (Zweite Auflage)
pp. 366-75. Berlin, Heidelberg, New York: Springer-Verlag.

Kreisel, G. & Krivine, J. L. (1967). Elements of Mathematical Logic, pp. 54-7.
Amsterdam: North-Holland.

McCarthy, J. (1958) Programs with common sense. Mechanization of Thought Processes
vol. I, pp. 77-84. Proc. Symp. Nat. Phys. Lab., London.

Paterson, M. (1972) Decision problems in computational models. Proc. A CM conference
on proving assertions about programs, pp. 74-82. Los Cruces, New Mexico.

Presburger, M. (1929) Uber die Vollstandigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
Comptes-Rendus du I Congres de Mathematiciens des pays Slaves, pp. 92-101, 395.
Warsaw.

