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Homework 3.1. [Equivalence] (4 points)
Let F and G be arbitrary formulas. (In particular, they may contain free occurrences of x.)
Which of the following equivalences hold? Proof or counterexample!

1. ∀x(F ∧G) ≡ ∀xF ∧ ∀xG

2. ∃x(F ∧G) ≡ ∃xF ∧ ∃xG

Solution: 1) holds. Assume A |= ∀x(F ∧G),
⇐⇒ for all d ∈ UA, we have A[d/x] |= F and A[d/x] |= G,
⇐⇒ for all d1 ∈ UA, we have A[d1/x] |= F and for all d2 ∈ UA, we have A[d2/x] |= G
⇐⇒ A |= ∀xF ∧ ∀xG

2) does not hold. Let F = P (x) and G = Q(x), UA = {0, 1}, PA = {0}, and QA = {1}.
Clearly, A |= ∃xF ∧ ∃xG but A 6|= ∃x(F ∧G)

Homework 3.2. [Preorders] (4 points)
A reflexive and transitive relation is called preorder. In predicate logic, preorders can be
characterized by the formula

F ≡ ∀x∀y∀z (P (x, x) ∧ (P (x, y) ∧ P (y, z) −→ P (x, z)))

Which of the following structures are models of F? No proofs are required for the positive
case. Give counterexamples for the negative case!

1. UA = N and PA = {(m,n) | m = n}

2. UA = 2N and PA = {(A,B) | A ⊇ B}

3. UA = Z and PA = {(x, y) | 5 > |x− y| }

Solution: 1,2 are obviously preorders.

3. This is not transitive, e.g., 5 > |1− 3| and 5 > |3− 6|, but 5 6> |1− 6|
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Homework 3.3. [Infinite Models] (5 points)
Consider predicate logic with equality. We use infix notation for equality, and abbreviate
¬(s = t) by s 6= t. Moreover, we call a structure finite iff its universe is finite.

1. Specify a finite model for the formula ∀x (c 6= f(x) ∧ x 6= f(x)).

2. Specify a model for the formula ∀x∀y (c 6= f(x) ∧ (f(x) = f(y) −→ x = y)).

3. Show that the above formula has no finite model.

Solution:

1. UA = {0, 1, 2} ⊂ N and cA = 0 and fA(0) = 1 | fA(n + 1) = 2− n

2. UA = N and cA = 0 and fA(n) = n + 1

3. Assume a model A. First note that the properties transfer to the semantic level, i.e.,
we have for all x, y ∈ UA:

cA 6= fA(x) (1)

fA(x) = fA(y) =⇒ x = y (2)

Now, we are in a position to show that UA is infinite. For this, we define xi = (fA)i(cA),
i.e. i times fA applied to cA. Clearly, we have xi ∈ UA for all i. We now show that
i < j implies xi 6= xj, immediately yielding infinity of UA. We do induction on i. For
0, we have x0 = cA 6= fA(. . .) = xj (by (1)). For i + 1, the induction hypothesis gives
us xi 6= xj, which implies xi+1 6= xj+1 (by (2)). qed.

Homework 3.4. [Normal Forms] (3 points)
Convert the following formula to Skolem form:

P (x) ∧ ∀x (Q(x) ∧ ∀x∃y P (f(x, y))

Show at least the main intermediate conversion stages.

Solution:

P (x) ∧ ∀x(Q(x) ∧ ∀x∃yP (f(x, y)))

;P (x) ∧ ∀x1(Q(x1) ∧ ∀x2∃yP (f(x2, y))) rectified

;∃xP (x) ∧ ∀x1(Q(x1) ∧ ∀x2∃yP (f(x2, y))) rectified and closed

;∃x∀x1∀x2∃y(P (x) ∧ (Q(x1) ∧ P (f(x2, y)))) RPF

;∀x1∀x2(P (g) ∧ (Q(x1) ∧ P (f(x2, h(x1, x2))))) Skolem form
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Homework 3.5. [Relation to Propositional Logic] (4 points)
Suppose that formula F does not contain any variables or quantifiers. Your task is to con-
struct a propositional formula G such that F is valid iff G is valid. Proof that your con-
struction does indeed fulfill this property. Is it also the case that F is satisfiable iff G is
satisfiable?

Hints : The approach should define a new atom for every atomic formula in F . To construct
a structure for F from an assignment for G, it may be helpful to use as your universe the
set of all terms which can be constructed from function symbols in F . You can assume that
F contains at least one constant to ensure that this universe is non-empty.

Solution: G is constructed from F by defining a new atom AP (t1,...,tk) for every atomic
formula P (t1, ..., tk) of G and then recursing over the formula structure of F . For instance if
F = (P (c) ∧ ¬Q(a, b)) ∨Q(b, c), then (AP (c) ∧ ¬AQ(a,b)) ∨ AQ(b,c).

We need to construct structures for F from assignments for G and vice versa.

(a) Let A be an assignment for G. Let UA′ be the set of all terms which can be constructed
from parts of F . Define I ′A such that

• IA′(f(t1, ..., tk)) = f(t1, ..., tk) for any function symbol f and terms t1, ...tk

• IA′(P (t1, ..., tk)) = A(AP (t1,...,tk)) for any predicate symbol P and terms t1, ...tk

It is easy to show that IA′(P (t1, ..., tk)) = A(AP (t1,...,tk)) by induction over the term structure.
With induction over the formula structure of F it follows that IA′(F ) = A(G).

(b) Let A′ = (U ′
A, I

′
A) be a structure of G. Define A(AP (t1,...,tk)) = IA′(P (t1, ..., tk)) for any

atom of G. It follows via induction over the formula structure of F that A(G) = IA′(F ).

Now suppose F is valid. LetA be any assignment for G. By (a) we know that we can construct
a structure A′ for F such that I ′A(F ) = A(G). Because F is valid we have I ′A(F ) = A(G) = 1.
Thus G is valid. An anologous argument using (b) shows that F is valid if G is valid.

Finally, the constructions of (a) and (b) can simiarly easily be used to argue that F is
satisfiable iff G is satisfiable.


