LOGICS EXERCISE

TU MUNCHEN

INSTITUT FUR INFORMATIK LARs HUPEL

Pror. ToBias NIPKOW

SS 2018 EXERCISE SHEET 3

24.04.2018

submitted in groups of two students.

Submission of homework: Wednesday 02.05.2018, before noon; either via email or
on paper in the TA’s office (MI 00.09.063). Until further notice, homework has to be

Exercise 3.1. [System Glc]
An alternative definition of the sequent calculus (“Glc”) is defined as follows:
Amioms
Ax A=A LL L=

Rules for weakening (W) and contraction (C)

'=sA I'=A
LWA,F::»& RWF:>A,A

AAT=A F=AAA
W—iT=A i T=AA

Rules for the logical operators

A, = A S '=AA '=sA,B
7 N T = L ARl AR A At BRRER E= SN W

AT=A BTI=sA ' A A; LT
W—"VET=A RV =aava t-0b
L_{F:;»&,A B,I'= A Res ATl=AB

A5 BT =A T=AAoB

Notably, weaking and contraction are built-in rules.
simulated by Glc, i.e., F¢ I' = A implies g ' = A.

Exercise 3.2. [Cut Elimination, Semantically]
Semantically prove the admissibility of the following rule:

If F¢qI'= F,Aand g F,I'= A then FqI' = A

Exercise 3.3. [More Connectives]
Define sequent rules for the logical connectives “nand” (A) and “xor” (®).

Show that sequent calculus can be

EXERCISE SHEET 3 Logics PAGE 2

Exercise 3.4. [Intermediate Formulas]
Let F, G be formulas such that ' = G. Prove that there is an intermediate formula H such
that the following three conditions hold:

1. H contains only atomic formulas that occur in both F and G
2. FEH
3. HEG

How can H be constructed?

EXERCISE SHEET 3 Logics PAGE 3

Homework 3.1. [Sequent Calculus] (2 points)
Prove the formula ((A — 1) — A) — A in System Glec.

Homework 3.2. [Inversion Rules] (6 points)
Show that the following inversion rules are admissible:

FAG T = A '=F—-GA
FGT=A FI'=GA

Homework 3.3. [Sequent Prover] (12 points)
Implement a sequent calculus prover in a high-level programming language, and test it for
examples from this exercise sheet, the lecture, or your own.

Submission: Source code for prover and tests, README file containing instructions for how to
build the prover and reproduce the tests; by email to hupel@in.tum.de. Allowed languages
are: Haskell, OCaml, Java, Scala, Rust, Prolog, C+-+, Python. Only the standard library
(i.e. no additional packages) may be used.

