LOGICS EXERCISE

TU München Institut für Informatik

Prof. Tobias Nipkow Lars Hupel

SS 2018

EXERCISE SHEET 4

30.04.2018

Submission of homework: Before tutorial on 08.05.2018. Until further notice, homework has to be submitted in groups of two students.

Exercise 4.1. [Atomic Cut]

Let A be an atomic formula. Prove that if $\vdash_G \Gamma \Rightarrow A, \Delta$ and $\vdash_G A, \Gamma \Rightarrow \Delta$, then $\vdash_G \Gamma \Rightarrow \Delta$.

Solution:

Let D_1 and D_2 be the derivations of the assumptions. Proof by induction on the depth of D_1 . Case analysis: What is the last proof rule in D_1 ?

 $\mathbf{A}\mathbf{x}$ There are two subcases:

1. A is the principal formula:
$$D_1 = \underbrace{\overline{A, \Gamma' \Rightarrow A, \Delta}}_{\Gamma}$$

Contract D_2 : $A, \Gamma' \Rightarrow \Delta$
2. A is not principal: $D_1 = \underbrace{\overline{B, \Gamma' \Rightarrow A, B, \Delta'}}_{\Gamma}$
 $\vdash_G \Gamma \Rightarrow \Delta$ by Ax
 $\wedge \mathbf{L} \ D_1 = \underbrace{\frac{F, G, \Gamma' \stackrel{D'_1}{\Rightarrow} A, \Delta}_{\Gamma}}_{\Gamma}$
 $\underbrace{\frac{D'_1 \qquad \overline{A, F, G, \Gamma' \Rightarrow \Delta}}_{\Gamma} \wedge \mathbf{L}^{-1}}_{\Gamma} \text{ IH}}_{\overline{F, G, \Gamma' \Rightarrow \Delta} \wedge \mathbf{L}^{-1}} \text{ IH}}$

Other cases are similar.

Exercise 4.2. [Natural Deduction] Prove the following formulas by natural deduction:

1. $(F \land G) \land H \to F \land (G \land H)$ 2. $(F \lor G) \lor H \to F \lor (G \lor H)$ 3. $\neg (F \land G) \to (\neg F \lor \neg G)$

Solution:

Exercise 4.2

Exercise 4.3. [Classical Reasoning]

We replace rule \perp of the calculus of natural deduction by either one of the following rules:

- $\overline{F \vee \neg F}$ (law of excluded middle)
- $\frac{\neg \neg F}{F}$ (double negation elimination)

Additionally, we add the rule $\frac{\perp}{F}$ ($\perp E$). Show that the calculus of natural deduction remains complete in both cases.

Solution:

We want to show that the \perp rule can be derived from either of the two other alternatives. Thus we assume that there is a proof of the form

and we need to show that we then can also prove F.

$$\frac{[\neg F]^{1}}{F} \stackrel{(\text{law of excluded middle})}{F} [F]^{1} \stackrel{(\downarrow F)}{F} \stackrel{(\downarrow E)}{VE} (1)$$

$$\frac{[\neg F]^{1}}{F} \stackrel{(\downarrow F)}{F} \stackrel{(\downarrow F)}{VE} (1)$$

$$\frac{[\neg F]^{1}}{F} \stackrel{(\downarrow F)}{VE} (1)$$

$$\frac{[\neg F]^{1}}{F} \stackrel{(\downarrow F)}{VE} (1)$$

Homework 4.1. [Natural Deduction]

(10 points)

Prove the following formulas by natural deduction (as specified in the lecture):

1. $((A \rightarrow B) \rightarrow A) \rightarrow A$

2.
$$(\neg G \to F) \to (\neg F \to G)$$

3. $\neg \neg \neg F \rightarrow \neg F$ (without using the \perp rule, but the $\perp E$ rule from Exercise 4.3 is allowed)

Homework 4.2. [Substitution] (10 points) Assume that there are proofs for $\vdash_N G \to G'$ and $\vdash_N G' \to G$. Construct the proof for $\vdash_N F[G/A] \to F[G'/A]$.