Practical Course — Contributing to an

Open-Source Project
Project Report on Rust-Lang/Chalk

Florian Sextl!

I Technical University of Munich, sext1@in.tum.de

1 Introduction

Free/Libre and Open Source Software (FLOSS) describes software that comes with a
certain set of freedoms guaranteed through a license. A large part of software used in
todays IT infrastructure and personal devices follows the FLOSS ideas and is developed
by Open Source communities. The practical course “Contributing to an Open-Source
Project” [17] aims to teach the participants the importance of FLOSS principals and
gives them all information necessary to successfully contribute to or even start own Open
Source projects. As such, the practical course concentrates on the basics of FLOSS and
requires the participants to apply this knowledge by contributing to an Open Source
project they chose beforehand.

In this final project report I document and assess the contributions I made to the
Chalk project and summarize the most important conclusions derived throughout the
practical course. The Chalk project is introduced with a short profile in Section 2. After
that section, a high-level description of the contributions to the Chalk project follows in
Section 3. Subsequently, the project work is evaluated with respect to Free/Libre and
Open Source Software best practices in Section 4. Lastly, Section 5 describes the lessons
learned throughout the practical part of the course and related observations regarding
the Chalk project.

2 Brief Profile of Chalk

The Rust programming language is a systems programming language that focuses on
performance and safety [27]. One central feature of Rust are so called traits. Traits
can be used to define certain properties about a type, e.g. that it can be printed for
debugging purposes. As such, traits play a similar role as interfaces in Java or type
classes in Haskell. Listing 1 shows an example trait Debug (that is part of the Rust

mailto:sextl@in.tum.de

standard library as std::fmt: :Debug) which is implemented by a generic type Point.
Every type that wants to implement Debug needs to provide its own implementation
of the fmt method. Point implements Debug for all type arguments T that themselves
implement Debug (i.e. T: Debug). Thus, it can use their fmt implementations as part of
its own. In the example, fmt is called on a Point with type argument u8 (i.e. the builtin
type for 8 bit unsigned integers) by printing it with the println! macro, which uses
fmt internally. Thus, u8 must implement the Debug trait for this program to compile.
In general, the compiler has to check whether a given type fulfils all trait constraints.
This check is modeled as the Rust trait system and can be utilized by both the type
checking and the type inference facilities of the compiler.

The Chalk project is a part of the Rust programming language development process
and aims at developing a “library that implements the Rust trait system, based on
Prolog-ish logic rules” [6], which is meant to replace the current trait system of the
Rust compiler Rustc in the future. The Chalk library models trait constraints like T:
Debug from the example Listing 1 as logic clauses and builds a logic program from these
clauses. The so generated program can then be queried to find out, for example, whether
a certain type can be used as a type argument in a specific place or whether there exists
a type that could be used in this place. An example query could be whether for all types
T a Pair{T) of this type would implement the Debug trait (in a rather mathematical
notation):

V T. Point(T): Debug

This is obviously false, as Point implements Debug only for types that implement Debug
themselves. The clauses generated from the Rust trait system use quantifiers to model,
for example, generic type parameters' (they are therefore first-order Hereditary Harrop
clauses [29]), whereas standard Prolog solvers work only with Horn clauses which can’t
contain quantifiers.

As a part of the Rust development process, the Chalk project is maintained by the Rust
programming language community (Rust-Lang for short) and a subsidiary of the Rust
Foundation [24]. To be precise, Chalk is maintained by the traits working group, which
itself is lead by members of the Rust-Lang compiler team. A more detailed description
of the governance for the Chalk project can be found in the preliminary report on this
course participation [28].

Chalk is mainly developed as part of the “library-ification” [cf. 16, 30] process of the
Rustc compiler? and provides a model of the Rust trait system that can be used by the
compiler and other language tools as well. One prominent example for such a tool is the

'The implementation type constraints would be lowered to this clause in Chalk’s notations:

forall(T) { Pair(T): Debug :- T: Debug }

2The idea behind this process is to extract models of central language components like the trait system
(cf. Chalk) or the borrow checker (cf. Polonius [7]) into shared libraries. With this modularization,
the compiler itself becomes less complex and the shared libraries can be used with a variety of projects
to provide a common basis.

trait Debug {
// Formats self as debug output
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;

¥

struct Point<T> {
x: T,
y: T,

}

impl<T: Debug> Debug for Point<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>{
self.x.fmt(£)7;
self.y.fmt (£)

}

fn main(){
let pair: Point<u8> = Point { x: 0, y: 1 };
// Prints "The debug output is: 01"
println! ("The debug output is: {:7}", pair);

Listing 1: Traits example.

compiler frontend and language server Rust-Analyzer [26], that utilizes Chalk as part of
its type checker [cf. 1].

Thus far, Chalk is not feature complete with regard to Rustc and includes two dif-
ferent incomplete solvers for the Hereditary Harrop clauses (i.e. the SLG solver and
the recursive solver). Both solvers have their respective strengths and weaknesses and
are still developed in parallel as none of the two is sophisticated enough yet to replace
the current system [cf. 1]. As an example, the Rust-Analyzer utilizes only the recursive
solver because it avoids a normalization issue the SLG solver is currently not capable
of solving [cf. 9]. Despite its incompleteness, Chalk is also partially integrated into the
unstable development version of Rustc [cf. 30].

3 Contributions to Chalk

The project phase of the practical course “Contributing to an Open-Source Project”
lasted circa 15 weeks, in which the participants worked on and contributed to an Open
Source project. In this period of time, I worked on the Chalk project and authored several
contributions. These contributions are listed in Table 1 and are described alongside the
most important aspects of the whole project work in the following section.

3.1 Timeline and Work Focus

Before the project phase, the practical course started with a theoretical part about the
basics of Free/Libre and Open Source Software and the best practices in its development.
After this initial phase, the course participants compiled preliminary reports about the
projects they would work on [cf. 28]. After the preliminary reports were submitted on
2020-12-01, the course entered the project phase (cf. Table 1).

I started my work on the Chalk project by introducing myself and the practical course
in the designated #new-members stream on the official Rust-Lang Zulip server [8] on
2020-12-04. At the same time, I started looking deeper into the inner workings of
Chalk to get a better understanding of how Chalk is supposed to work and how this
is achieved. To that end, I read through the Chalk book [29], looked through the
source code, read the documentation there and asked some initial questions regarding
the general structure on Zulip [5, 2]. Throughout this research process, several small
problems with the documentation attracted my attention. These could be solved by the
pull requests #663, #668, #674 and #675 [18, 19, 20, 21].

After I grew accustomed to the Chalk project’s structure, I started looking for issues
to work on. For this, I focused on bug reports as the search for the bugs’ causes would
provide a good opportunity to learn about the implementation in greater detail. The
reported bugs were either related to infinite loops or wrong unification of goal clauses
[12, 11]. T reproduced the bugs, investigated what happens and where the bugs are
introduced and shared my findings with the working group [1, 3]. Due to a lack of deeper
understanding to what causes these bugs and how they could be fixed, I refrained from
working on patches for them.

Instead, I concentrated on gaining a better understanding of the recursive solver, for
which the aforementioned bugs occurred. For this purpose, I looked into a missing
feature in the recursive solver that would allow to handle specific corner cases correctly.
This feature was described alongside a rough implementation sketch in issue #399 [10].
For the last weeks of the project phase, I developed three different implementation
approaches based on the idea from the issue. In the end, I opened a pull request for the
most sophisticated solution [23]. The whole contribution process is described in more
detail in Section 3.3.

3.2 Communication about Chalk

The primary communication platform for exchange about the development of Rust-Lang
projects is the Rust-Lang Zulip instance [25]. Thus, all discussions about the Chalk
project are meant to happen in the designated #wg-traits stream. Accordingly, I opened
dedicated threads for all general questions about Chalk in this stream. In these threads,
I asked about the development status, the purpose of specific components and historic
decisions about Chalk [5, 1, 2, accordingly]. In addition to these question threads, I
also shared and discussed detailed debugging results with the wg-trait members [3, 1].
Answers to both questions and debugging results were given in most cases in less than
one day, only in some cases it took a week or more to get an answer.

In contrast to the more extensive discussion threads in the #wg-traits Zulip stream,
there were little to no discussions on the pull requests I issued through the course of the
project phase. This is due to the fact that the contents of the pull requests were either
already discussed in a Zulip thread, or simple enough that the reviewers had no need for
any sort of additional exchange about them.

Besides Zulip threads dedicated to a specific topic and comments on GitHub issues
and pull requests, the main form of exchange within the traits working group was weekly
textual meetings. These meetings were held as Zulip conversation threads and were used
to cooperate on issue triages and to coordinate development efforts in the near future
[32, 33, 35, 36, 38, inter alia]. Although the traits working group maintains Chalk, not
all weekly meetings were focused on the development of Chalk, as the working group is
responsible for all trait system related topics. Thus, I only participated seldomly in the
meeting discussions, albeit I attended all meetings and always followed them to the end.

3.3 A Contribution by Example

My final contribution in the project phase was to propose a feature addition to the
recursive solver. This feature was aimed at improving the handling of coindutive cycles
(i.e. goals that depend on each other cyclicly). The current way of handling these cycles
could lead to false positive solutions for goals in rare edge cases. In these cases, positive
results are cached before they are proved to be sound and can thus falsify other results.
This shortcoming was described in issue #399 [10] alongside some solution ideas.

I started my work on this issue with examining why the problem arises and which
parts of the recursive solver are involved. Based on this information, I developed a
first implementation and opened a draft pull request for it [22]. Although this first
implementation sufficed to solve all problematic test cases, I decided to develop a second
implementation. The two implementation approaches differ in how much code they
change and how they achieve the new feature. Whereas the first implementation is
based on exploiting an existent way of delaying the caching of results, the second one
introduces an own cache for result from coinductive cycles. The usage of this second
cache requires to track where a result came from and if it depends directly or indirectly
on a coinductive cycle. This tracking was implemented by adding a flag to results and
change the handling based on this flag. To this end, changes in most components of the
recursive solver were necessary. Both implementation approaches have in common that
they come with a description of their functionality in the Chalk book.

After the pull request with the first approach was marked as ready to review, Jack
Huey, one of the working group leaders, had a look at it on the same day. As they didn’t
have enough expertise with the recursive solver, they notified two other working group
members who would be able to give a more insightful review. Unfortunately, they did
not assign the other members as reviewers. The pull request was then pointed out to
Niko Matsakis, one of the reviewers and the other working group leader, eleven days
after the initial mention [37]. In the meeting the week after that the still outstanding
review was mentioned again [38]. In the days after this meeting, I discovered a problem
with the second implementation approach and started working on improving it. On

this occasion, I also reworked the tracking of results that could lead to false positives.
This effort then lead to a new approach; a dedicated coinduction handler component
that manages a temporary cache and is able to handle even nested coinductive cycles
correctly. The necessary changes for this coinduction handler were less than for the
second approach. Thus, I closed the old pull request, which still hadn’t been reviewed,
in favor of the third approach and issued a new pull request for it [23].

About one week after the new pull request was opened, it was reviewed by the orig-
inally assigned reviewer. They commented on two smaller shortcomings and and an-
nounced that they would do another more detailed review later. In parallel to this
review process, we discussed whether the first approach would actually have been rea-
sonable as well [4]. At the point of this writing, both the review and the discussion are
still in process.

4 Evaluation

The project work described in Section 3 resulted in several contributions to the Chalk
project. In the context of the practical course, these contributions, all aspects of the
project work and the motivations behind them shall be critically assessed. It is of
special interest whether my work followed the best practices of Open Source software
development and if it fulfilled the course’s goals.

4.1 Autonomous Work

My contributions to the Chalk project were created in a mostly autonomous fashion.
Both the initial research for the preliminary report and the subsequent investigation on
the Chalk source code base were carried out without any help by other contributors.
The motivation behind this approach was to gather all necessary information without
bothering other contributors with questions, for which the solution has already been
documented. Although asking for the required information might save time for new
contributors, it seemed to me that it would require more effort by a seasoned team
member than they could spare at that moment. This conception was based on the fact
that there were no meetings and little to no significant contributions to Chalk between
the mid of December, 2020 and the end of January, 2021 [cf. 5]. Even after this period,
there was only little active development on Chalk and working group members did only
find time to answer requests after up to five days [cf. 3]. In addition, the majority of the
working group is based in the United States and communication with these members
needs to be either asynchronous or in the limited time span in which both involved
parties would be active. Due to these two limitations in effective communication with
working group members, I decided to accumulate questions that arose while I worked
on my contributions. These accumulated questions could then be posted when it was
guaranteed that working group members would notice them in a timely manner.

In retrospect, my autonomous approach has proved to be reasonable yet not ideal.
In particular, I was able to learn most necessary details about Chalk on my own and

could work based on this information when the working group members were not able to
share enough of their time with me. On the downside, autonomous working is not only
slower than guided efforts, but also needs regular synchronization to not lose direction.
As such, too much autonomous work is discouraged by the best practices of FLOSS.
In the context of Chalk, the large amount of autonomous work resulted in another
disadvantage. Small, regular interactions allow more developers to participate as they
don’t need much time to follow the conversations. If a conversation consists of longer
texts and more topics at once, they become harder to follow and harder to take part in.
Therefore, most interactions throughout the practical phase were only between me and
the second leader of the traits working group, Jack Huey [3].

4.2 Reserved Commitment regarding Contributions

As mentioned before, I seldomly participated in the weekly working group meetings. The
primary motivation for this reservation was my understanding that the meetings would
be for interaction between the working group members only, as well as some shyness
on my end. Although I grew gradually accustomed to interacting with members of the
traits working group, a certain reluctance remained regarding what I could contribute to
these meetings. In a similar fashion, I did not feel confident enough about how and when
to inquire about reviews of both code changes and debugging results. This resulted in
me waiting for the next working group meeting for updates instead of asking the parties
concerned directly. The general feeling of insecurity regarding my knowledge of Chalk
and the Rust trait system also resulted in me focusing on improvements of the Chalk
book and investigation of bug reports. Both topics need only little knowledge about the
way Chalk works on more then one abstraction level (cf. Section 5.3). Thus, I delayed
my first feature contribution to the end of the project phase when I had gained enough
understanding and felt able to provide a sufficient implementation.

In summary, the missing confidence and knowledge lead to a more passive way of
interacting with the traits working group members and a focus on small contributions.
Thus, I missed the opportunity to experience even more aspects of contributing to an
Open Source project than I already did with my contributions.

4.3 Search for Knowledge

One central aspect of my project work on Chalk was, as described before, my effort in
understanding the structure and inner workings of the library in greater detail. This
focus on research was motivated by the desire to first achieve a certain level of knowledge
before working on something. Due to this, I spent more time learning about the theory
behind and the source code of Chalk than actually contributing to the project. In addi-
tion, most pull requests issued by me were either aimed at improving the documentation
in the Chalk book ([18, 19],inter alia) or at least contained additions to it (primarily
23).

In conclusion, the focus on gaining a better understanding resulted in less contributions
and was therefore counterproductive to the goals of the practical course on one hand. On

the other hand, I was able to gain enough knowledge about Chalk and especially about
the recursive solver to now be able to implement more meaningful contributions. The
pull request #690 can be seen as evidence for this newly acquired knowledge. In addition,
I kept track of most discussions on the Rust-Lang Zulip server, which allowed me to learn
not only about the development process of Chalk but also of the Rustc compiler and other
Rust-Lang projects. The insight thus gained may prove helpful in future contributions
to Chalk and other Rust-Lang projects. As such, the goal of the practical course -
to prepare its participants for more participation in the FLOSS community - has been
achieved to its fullest. On top of this, I also learned about several features of the Rust
programming language that are currently considered unstable and actively developed,
but which are already supported by Chalk. Due to these insights, my understanding
of the Rust programming language and its development goals increased by a significant
amount, which in turn also allows me to make more meaningful contributions to the
Rust-Lang community in the future.

4.4 Reflection on the Preliminary Report

The preliminary report [28] is based on the results of my research about the organization
and management aspects of the Chalk project. Thus, the preliminary report was the
basis for all following project work and should be assessed as such. In retrospect, there
are several assumptions and assessments in the preliminary report that have proved to
be inaccurate.

First and foremost, my evaluation of the development status of Chalk was askew. Back
then, I evaluated the integration of Chalk into Rustc as already usable in the development
version. This is not entirely correct, as Chalk can be utilized via a compiler feature flag
but results in many errors even for simple programs. In addition, the integration is also
incomplete in that sense that not all of Chalks functionalities can actually be utilized.
Other than the integration into Rustc, I also assessed the role of Chalk as part of the
Rust-Analyzer. In particular, it was described as merely “usable” [28, page 2|, whereas
in reality Rust-Analyzer utilizes Chalk as its primary trait system model.

Another misconception in the preliminary report was to anticipate “broader interest
and participation” [28, in section 3| by a growing number of dedicated contributors of the
Chalk project. Over the course of the project phase, it became apparent that most con-
tributors to Chalk, especially the traits working group members, work on Chalk as part
of the development of the whole Rust programming language. The focus of the working
group on traits related topics other than Chalk is evidence for this observation. In sum-
mary, my previous statement is too general and should be changed to “broader interest
and participation” by the Rust-Lang community as a whole and Rustc contributors in
particular.

One other aspect of the preliminary report, that proved to be inaccurate, was the
anticipation of a highly beginner friendly variety of open GitHub issues. Whereas new
issues are often solved in a timely manner, most of the open issues are older than one
year and not actively handled or managed. This situation influenced my reluctance to
work on bigger contributions described in Section 4.2, as well.

In spite of the misconceptions made in the preliminary report, the initial research
for this report resulted in mostly reliable information about the Chalk project and its
governance. It can, therefore, be seen as a successful preparation for the subsequent
project phase.

5 Lessons learned

Independently of how the project work is assessed, it is possible to abstract aspects
of the Chalk project and derive conclusions about similar FLOSS projects in general.
These conclusions are then also evaluated with regard to how certain aspects might affect
future participants of the practical course “Contributing to an Open-Source Project”.

5.1 Subproject Relations in Open Source Communities

The Chalk project is developed as a project of the Rust-Lang community and, in partic-
ular, as a subproject of the Rustc compiler. Although it is part of the “library-ification”
efforts that try to decouple parts of Rustc into distinct libraries, the development of
Chalk is primarily aimed at the integration into Rustc [31, inter alia]. In addition, a
majority of contributions to Chalk can be accredited to developers who already had ex-
perience with the Rustc compiler before starting to work on Chalk. As an example, of the
506 pull requests up to this date (2021-03-12), 330 were opened by working group mem-
bers [14, 15]. As a result of these pull requests 1756,/2879 commits with 557237/607947
additions and 509743/548179 deletions were contributed by working group members (all
numbers were acquired through GitHub’s REST API on 2021-03-12). Around half (6
of 14, [15]) of the working group members are in parallel members of the Rust-Lang
compiler team with a rising tendency [34].

The relation between the Chalk and the Rustc projects can be described as a “hidden”
subproject relation. Both the alignment to Rustc and the strong influence of compiler
team members is not apparent at a first glance and could therefore be described as
“hidden”. This kind of relation increases the workload for new contributors as they
have to get accustomed to the parent project as well. Thus, this structure makes the
subproject less suited for the practical course “Contributing to an Open-Source Project”
where the participants should concentrate on only one project. Apart from that, it allows
the participants to learn about the intricate structure and relations of bigger Open Source
communities, which in turn simplifies contributing to these projects after the end of the
practical course.

5.2 Small, Global Teams and Slow Progress

The Chalk project is a small project; not only with regard to the lines of source code it
contains, but also with regard to the number of contributors working on it. The traits
working group has 14 members of which two are the team leaders [15]. As it is often the
case with Open Source projects, the working group members and contributors are also
located in several different time zones. Despite this, pull requests with trivial changes

were often reviewed and merged not later than the next day (e.g. [18, 19, 20]). As
could expected, pull requests with more extensive changes can still take more than a
week to be reviewed if the responsible reviewers do not find the time for it (e.g. [23]).
Another aspect of small teams and small projects is the amount of influence a single
contributor can have. In the context of Chalk, this correlates with the new feature and
documentation added in pull request #690.

In general, a small number of geographically distributed developers and maintainers
makes it difficult to find a contact person which is reachable when needed. Furthermore,
the general development progress of a smaller team is likely to be slower than with bigger
teams. This property may become especially relevant if only few of these developers are
able to work fully on the project. Both of these factors make small projects less optimal
for this practical course as participants might be required to do more work on their own
and are likely to have to wait longer for responses and reviews. Yet, projects that meet
the described properties can become a good opportunity to become a regular contributor
or even maintainer oneself and, thus, have a greater influence on future development
decisions.

5.3 Mentoring and Introduction

Chalk is a rather complicated software library. Although it has not as many lines of code
as, for example, the Rustc compiler, it requires knowledge about the whole trait system
to understand it in its fullest. Therefore, Chalk differs from many other Open Source
projects in that it contains another layer of complexity. Most software projects can be
described by three distinguished levels of information that a developer needs to know;
these are the underlying theory of what the software should do on a high level (i.e. its
business logic), an overview of how the software is divided in modules and which module
provides which functionalities and, lastly, the actual source code itself. Even though
this partitioning might not be valid for all possible software projects, it is particularly
apparent in the Chalk project. For the Chalk project, the high level theory describes
how Rust code should be lowered to clauses and how the SLG solver and the recursive
solver should prove or disprove goals with these clauses. The middle level describes how
the lowering, the intermediate representation and the solvers work together, whereas the
source code level describes the inner workings of these modules in detail. The difference
for Chalk in comparison to other projects is the fourth level consisting of the theory of
the Rust trait and type systems. This theory is essential for both the lowering process
and the correct handling of corner cases in all parts of Chalk.

As a result, starting work on Chalk can be more difficult than with other software
projects. This increased difficulty results in an increased necessity for beginers instruc-
tions. These instructions could be provided in the form of a detailed tutorial with
extensive documentation or by a strong mentorship program. The first solution would
require the project to be more or less stable as frequent and more extensive changes
to the source code would also require frequent and extensive updates on the tutorial.
On the other hand, the second solution requires a dedicated maintainer team that has
enough time to spend on mentoring new contributors [cf. 13]. Thus, both solution ap-

10

proaches would not work well for small and experimental niche projects like Chalk and
new contributors need to be willing to commit more time for getting to know the whole
project to be able to contribute in the long run. Even though this fact increases the
workload and difficulty for future participants of the practical course when choosing such
a project, it does not make it impossible to develop a meaningful contribution.

5.4 Challenges in FLOSS Project Work

The most important realization that I made during the project phase was that contrib-
utors to Open Source projects have to challenge themselves and sometimes also other
contributors. Challenges are mostly related to the personal capacity of each contributor
and can be found in all aspects of Open Source development.

The most central challenge is the communication with other contributors and with
maintainers. Even in smaller projects, the interaction with unfamiliar developers can
require courage and might lead to a reserved demeanor (cf. Section 4.2). This effect
can be amplified if the contrast in conversational tone between native and non-native
speakers becomes too apparent in technical discussions (cf. [3] or the five minute differ-
ence between a message and my answer in [39]). Additionally, successful work on Open
Source projects often requires collaboration of contributors. For this collaboration to
succeed, an exchange of knowledge and a realistic advertisement of a contributors own
strengths and abilities is inevitable, yet not trivial to do.

Another aspect of Open Source development that can become a challenge is coordi-
nation of work. Most Open Source projects have only a limited amount of open issues,
that contributors can work on. Although cooperation platforms such as GitHub and
Gitlab allow users to claim issues for themselves to work on, parallel work on issues is
likely to occur even in small projects®. Such situations might either lead to tensions or
cooperation depending on how both contributors behave.

6 Conclusion

Although my work on the Chalk project has not been as anticipated, it resulted in a
number of lessons learned and newly acquired skills as well as several contributions. The
project phase has especially proved to be helpful in becoming able to make meaningful
contributions to Rust-Lang projects. In addition, I am motivated to work on FLOSS
projects in the future in general and will continue to contribute to Rust-Lang projects
and Chalk in particular. Hence, the participation in the practical course “Contributing
to an Open Source Project” with regard to Chalk was successful in its own right.

3 An example for this is issue #667 [12]. T started looking into it the same day a maintainer opened a
pull request with a solution draft for this issue.

11

References

1]
2]

About the recursive solver Thread. URL: https://zulip-archive.rust-lang.org/
144729wgtraits /49904 Abouttherecursivesolver.html (visited on 2021-01-14).

AliasEq vs ProjectionEq questions Thread. URL: https://zulip-archive.rust-lang.
org/144729wgtraits /89128 AliasEqvsProjectionEqquestions.html (visited on 2020-
12-28).

Ambiguous WF Results Thread. URL: https://zulip-archive.rust-lang.org/144729w
gtraits/14716 AmbiguousWFResults.html (visited on 2021-01-28).

coinduction Thread. URL: https://zulip-archive.rust-lang.org/144729wgtraits /
71232coinduction.html (visited on 2021-03-11).

Development in the near future - Zulip Thread. URL: https://zulip-archive.rus
t-lang.org /144729wgtraits / 1951 7Developmentinthenearfuture. html (visited on
2020-12-13).

GitHub repository of Chalk. URL: https://github.com /rust-lang/chalk (visited on
2021-03-04).

GitHub repository of Polonius. URL: https:/ /github.com /rust-lang / polonius
(visited on 2020-11-26).

Hi from FireFighterDuck. URL: https://zulip-archive.rust-lang.org/122652newme
mbers/04476HifromFireFighterDuck.html (visited on 2021-03-05).

Issue 234 on Chalk. URL: https://github.com/rust-lang/chalk /issues/234 (visited
on 2021-03-04).

Issue 399 on Chalk. URL: https://github.com /rust-lang/chalk /issues/399 (visited
on 2021-02-11).

Issue 587 on Chalk. URL: https://github.com/rust-lang/chalk/issues/587 (visited
on 2021-01-14).

Issue 667 on Chalk. URL: https://github.com/rust-lang/chalk/issues/667 (visited
on 2021-01-14).

Stephan Kulla. Guest Talk Motivation in Open Source Projects. ”invited talk at
university”. 2020-12-08.

List of Pull Request on Chalk. URL: https://github.com /rust-lang /chalk /pulls
(visited on 2021-03-09).

List of Traits Working Group Members. URL: https://github.com /rust-lang/
team/blob/master/teams/wg-traits.toml (visited on 2021-03-08).

Nicholas D. Matsakis. Library-ification and analyzing Rust. 2020-04-09. URL: https:
/ /smallcultfollowing.com /babysteps/blog/2020/04 /09 /libraryification/ (visited
on 2021-03-04).

Practical Course - Contributing to an Open-Source Project Website. URL: https:
//www2l.in.tum.de/teaching/osp/WS20/index.html (visited on 2021-03-04).

12

https://zulip-archive.rust-lang.org/144729wgtraits/49904Abouttherecursivesolver.html
https://zulip-archive.rust-lang.org/144729wgtraits/49904Abouttherecursivesolver.html
https://zulip-archive.rust-lang.org/144729wgtraits/89128AliasEqvsProjectionEqquestions.html
https://zulip-archive.rust-lang.org/144729wgtraits/89128AliasEqvsProjectionEqquestions.html
https://zulip-archive.rust-lang.org/144729wgtraits/14716AmbiguousWFResults.html
https://zulip-archive.rust-lang.org/144729wgtraits/14716AmbiguousWFResults.html
https://zulip-archive.rust-lang.org/144729wgtraits/71232coinduction.html
https://zulip-archive.rust-lang.org/144729wgtraits/71232coinduction.html
https://zulip-archive.rust-lang.org/144729wgtraits/19517Developmentinthenearfuture.html
https://zulip-archive.rust-lang.org/144729wgtraits/19517Developmentinthenearfuture.html
https://github.com/rust-lang/chalk
https://github.com/rust-lang/polonius
https://zulip-archive.rust-lang.org/122652newmembers/04476HifromFireFighterDuck.html
https://zulip-archive.rust-lang.org/122652newmembers/04476HifromFireFighterDuck.html
https://github.com/rust-lang/chalk/issues/234
https://github.com/rust-lang/chalk/issues/399
https://github.com/rust-lang/chalk/issues/587
https://github.com/rust-lang/chalk/issues/667
https://github.com/rust-lang/chalk/pulls
https://github.com/rust-lang/team/blob/master/teams/wg-traits.toml
https://github.com/rust-lang/team/blob/master/teams/wg-traits.toml
https://smallcultfollowing.com/babysteps/blog/2020/04/09/libraryification/
https://smallcultfollowing.com/babysteps/blog/2020/04/09/libraryification/
https://www21.in.tum.de/teaching/osp/WS20/index.html
https://www21.in.tum.de/teaching/osp/WS20/index.html

Pull Request 663 on Chalk. URL: https://github.com /rust-lang /chalk /pull /663
(visited on 2020-12-13).

Pull Request 668 on Chalk. URL: https://github.com /rust-lang/chalk /pull /668
(visited on 2020-12-28).

Pull Request 674 on Chalk. URL: https://github.com /rust-lang /chalk /pull /674
(visited on 2021-01-14).

Pull Request 675 on Chalk. URL: https://github.com /rust-lang/chalk /pull /675
(visited on 2021-01-14).

Pull Request 683 on Chalk. URL: https://github.com /rust-lang/chalk /pull /683
(visited on 2021-02-11).

Pull Request 690 on Chalk. URL: https://github.com /rust-lang/chalk /pull /690
(visited on 2021-03-05).

Rust Foundation Website. URL: https://foundation.rust-lang.org/ (visited on
2021-03-04).

Rust Language Zulip Instance. URL: https://rust-lang.zulipchat.com/ (visited on
2021-03-05).

rust-analyzer Website. URL: https://rust-analyzer.github.io (visited on 2020-11-
24).

rust-lang.org. URL: https://rust-lang.org (visited on 2020-11-24).

Florian Sextl. Practical Course — Contributing to an Open-Source Project. Pre-
liminary Report on Rust-Lang/Chalk. Tech. rep. Technical University of Munich,
2020. URL: https://www2l.in.tum.de/teaching/osp/WS20/assets/pr-sextl-rust-
chalk.pdf.

The Chalk Book. URL: https://rust-lang.github.io/chalk /book (visited on 2020-
11-24).

Jack Huey on behalf of The Traits WG. Traits working group 2020 sprint 1 sum-
mary. URL: https://blog.rust-lang.org /inside-rust /2020 /03 /28 / traits-sprint-
1.html (visited on 2021-03-04).

Weekly Workgroup Meeting 2020-11-17 Thread. 2020-11-17. URL: https://zulip-

archive.rust-lang.org / 144729wgtraits / 36754meeting20201117 . html (visited on
2020-11-24).

Weekly Workgroup Meeting 2020-12-08 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/33363meeting20201208.html (visited on 2020-12-13).

Weekly Workgroup Meeting 2020-12-15 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/67825meeting20201215.html (visited on 2020-12-28).

Weekly Workgroup Meeting 2021-01-05 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/05679meeting20210105.html (visited on 2021-03-09).

13

https://github.com/rust-lang/chalk/pull/663
https://github.com/rust-lang/chalk/pull/668
https://github.com/rust-lang/chalk/pull/674
https://github.com/rust-lang/chalk/pull/675
https://github.com/rust-lang/chalk/pull/683
https://github.com/rust-lang/chalk/pull/690
https://foundation.rust-lang.org/
https://rust-lang.zulipchat.com/
https://rust-analyzer.github.io
https://rust-lang.org
https://www21.in.tum.de/teaching/osp/WS20/assets/pr-sextl-rust-chalk.pdf
https://www21.in.tum.de/teaching/osp/WS20/assets/pr-sextl-rust-chalk.pdf
https://rust-lang.github.io/chalk/book
https://blog.rust-lang.org/inside-rust/2020/03/28/traits-sprint-1.html
https://blog.rust-lang.org/inside-rust/2020/03/28/traits-sprint-1.html
https://zulip-archive.rust-lang.org/144729wgtraits/36754meeting20201117.html
https://zulip-archive.rust-lang.org/144729wgtraits/36754meeting20201117.html
https://zulip-archive.rust-lang.org/144729wgtraits/33363meeting20201208.html
https://zulip-archive.rust-lang.org/144729wgtraits/33363meeting20201208.html
https://zulip-archive.rust-lang.org/144729wgtraits/67825meeting20201215.html
https://zulip-archive.rust-lang.org/144729wgtraits/67825meeting20201215.html
https://zulip-archive.rust-lang.org/144729wgtraits/05679meeting20210105.html
https://zulip-archive.rust-lang.org/144729wgtraits/05679meeting20210105.html

[35]

Weekly Workgroup Meeting 2021-01-19 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/98900meeting20210119.html (visited on 2021-01-28).

Weekly Workgroup Meeting 2021-01-26 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/33362meeting20210126.html (visited on 2021-01-28).

Weekly Workgroup Meeting 2021-02-16 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/64434meeting20210216.html (visited on 2021-03-11).

Weekly Workgroup Meeting 2021-02-23 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/98896meeting20210223.html (visited on 2021-02-25).

Weekly Workgroup Meeting 2021-03-09 Thread. URL: https://zulip-archive.rust-
lang.org/144729wgtraits/92117meeting20210309.html (visited on 2021-03-10).

14

https://zulip-archive.rust-lang.org/144729wgtraits/98900meeting20210119.html
https://zulip-archive.rust-lang.org/144729wgtraits/98900meeting20210119.html
https://zulip-archive.rust-lang.org/144729wgtraits/33362meeting20210126.html
https://zulip-archive.rust-lang.org/144729wgtraits/33362meeting20210126.html
https://zulip-archive.rust-lang.org/144729wgtraits/64434meeting20210216.html
https://zulip-archive.rust-lang.org/144729wgtraits/64434meeting20210216.html
https://zulip-archive.rust-lang.org/144729wgtraits/98896meeting20210223.html
https://zulip-archive.rust-lang.org/144729wgtraits/98896meeting20210223.html
https://zulip-archive.rust-lang.org/144729wgtraits/92117meeting20210309.html
https://zulip-archive.rust-lang.org/144729wgtraits/92117meeting20210309.html

Title Work done Start date End date Results References
Preliminary Report Research on project structure of Chalk 2020-11-17 2020-12-01 Preliminary Report [28]
Pull Request #663 Update a JS library used with the Chalk book 2020-12-10 2020-12-11 Merged [18]
Pull Request #668 Update the Chalk book section on AliasEq 2020-12-23 2020-12-24 Merged [19]
Issue #667 Debugging 2021-01-04 2021-01-04 None [12]
Issue #587 Debugging 2021-01-05 2021-02-01 Bug location narrowed down [1, 3]
Pull Request #674 Remove duplicate code 2021-01-08 2021-01-08 Merged [20]
Pull Request #675 Correct a formula in the Chalk book 2021-01-12 2021-01-13 Merged [21]
Pull Request #683 Implement delayed caching for coinduction 2021-02-04 2021-03-02 Closed [22]
Pull Request #690 Implement dedicated coinduction handler for the recursive solver 2021-03-02 - Open [23]

Table 1: Chronologically ordered Contributions in the Project Phase

15

	Introduction
	Brief Profile of Chalk
	Contributions to Chalk
	Timeline and Work Focus
	Communication about Chalk
	A Contribution by Example

	Evaluation
	Autonomous Work
	Reserved Commitment regarding Contributions
	Search for Knowledge
	Reflection on the Preliminary Report

	Lessons learned
	Subproject Relations in Open Source Communities
	Small, Global Teams and Slow Progress
	Mentoring and Introduction
	Challenges in FLOSS Project Work

	Conclusion

