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Abstract

In Haskell, monads provide a mechanism for mapping functions of the type
a -> m b to those of the type m a -> m b. This mapping is dependent on m,
hence the behaviour of the resulting function can be made specific to m, allowing
for a wide range of notions ranging from non-determenism to failure-handling
to be modelled. Additionally, the way monads behave make it possible to use
both functions with effects and those without effects in the same program whilst
keeping them separated, letting Haskell preserve its functional aspect without
losing the ability to run programs that have effects. Due to the utility of
monadic programming (i.e. programming with monads), Haskell has a specific
syntax (called ‘do notation’) specifically for programming with monads. This
article describes what monads are in Haskell, and how to program with them.
Examples of monads are given including the List, Maybe and IO monad.

1 Introduction

Initially having its roots in Category Theory, the concept of a monad was
applied to the theory of programming languages by Moggi in 1989 [6, 10] leading
to the inclusion of monadic features into Haskell soon after, such as monadic
IO in 1996 [6]. Despite the fact that the concept of a monad is a purely
functional one, monads are especially useful for modelling programs that depend
on interaction with the external world (including IO) in the context of functional
programming languages without violating the functional purity of the language
itself. This is done by forcing any function application on external input to take
place within a monad, making it impossible to write functions whose output
depends on external factors. Section 2 of this article gives a definition of a
monad (in the context of functional programming languages), along with the
corresponding definition in Haskell. Section 3 contains examples of monads,
and examples of how to use them. Section 4 looks at do notation, followed
by Section 5 which briefly introduces some Monadic combinators. Section 6
contains a description of the IO Monad. Finally, a conclusion is given.
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2 Definition of a Monad

2.1 The Hask Category and Functors

To understand monads, it can be helpful to compare them with functors. Both
of these concepts are best understood by looking at Haskell in the context of
Category Theory. Every type in Haskell can be seen as a node (or “object”) in a
directed multigraph, and (non-polymorphic, terminating) functions as labelled
edges (or ”arrows”) between these objects. This, along with an identity arrow
for each type and an associative rule for function composition, characterizes a
Category [13]. The category consisting of Haskell types and arrows in the way
described above will be referred to as Hask hereafter, and the set of objects of
this Category (i.e. Haskell types) as Ob(Hask). Functions are considered equal
if they give the same output on all values1[4].

Int

[Int] Bool

length

sum

succ

idBool

even

even.sum

Figure 1: Some Objects and Arrows in Hask

Figure 1 introduces the following notation: ida refers to the Haskell function
id::(a->a). The other functions in Figure 1 are hypothetical non-polymorphic
Haskell functions of the given types. For example, the arrow length in Figure 1
could refer to the function length::[Int]->Int from Prelude. To distinguish
between functions in the mathematical sense and Haskell functions, the follow-
ing notation is used: f : X → Y refers to a mathematical function from X
to Y . In contrast to this, a -> b, where a, b ∈ Ob(Hask) refers to the set of
Hask arrows from a to b (which is identified with the Hask object of the same
name). When the definition of a type of a function uses both notations and that
function can be implemented in Haskell, all occurences of → can be replaced
with ->. If x is of the type a, i.e x is an element of an object of Hask (Note
that in Hask, arrows also have types), we write x :: a. Function composition of
two Hask functions f and g is written as f . g.

A functor is a structure preserving mapping from one category to another.
Functors can be thought as the category-theoretic equivalent of homomorphisms

1Note that this is not intended as a rigorous definition of a Category. The framework of Category
Theory is only used to provide a better understanding of monads and functors and not to prove any
rigorous results.
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in graph theory. We consider only functors from Hask to Hask in this article.
Such a functor can be formally defined as a pair of functions f0 and f1 so
that f0 : Ob(Hask) → Ob(Hask) and f1 : Hom(Hask) → Hom(Hask), where
Hom(Hask) refers to the union of all the sets a -> b, where a, b ∈ Ob(Hask) so
that the following holds [9]:

1. If g :: a -> b, then f1(g) :: f0(a) -> f0(b).

2. For all a ∈ Ob(Hask), f1(ida) = idf0(a).

3. If g, h ∈ Hom(Hask) then f1(g . h) = f1(g) . f1(h).

An example of a functor is f0(a) = List a, and f1(f) = map f . It can be
easily verified that this is indeed a functor.
Functors can be described in Haskell using the Functor typeclass. The func-
tion f0 is, however, not a Haskell function, but is implicitly the function
a 7→ m a,where m is in the Functor typeclass.2 The function f1 is simply
fmap, and the Haskell functor laws together with type of fmap correspond the
rules given in the definition above.

a b

m a m b

f

fmap f

Figure 2: A Functor in Hask

2.1.1 Monads in Hask

Functors are useful if we want to lift ‘simple’ functions of the form a -> b to
‘higher’ functions of the form m a -> m b (Figure 2). However, it is often the
case that we wish to not only lift ‘simple’ functions but that it would be useful
to have a way to lift functions of the form a -> m b (Figure 3). For example,
taking the definition of ‘fmap’ for lists, we would like to be able to lift Haskell
functions like f a = [a + 1] to the “List Level” in a way that does not simply
create a list of lists. Monads provide exactly such a way of lifting functions.
Formally speaking, a monad has the following definition [11, 14]:

A monad is a triple (m, return, ?) where m : Ob(Hask) → Ob(Hask) and
returna :: a -> m a, and ? : (a -> m b) → (m a -> m b) satisfying:

1. ?(returna) = idm a

2. ?(f) . returna = f

3. ?(g) . ? (f) = ?(?(g) . f)

where f and g are any Haskell functions composable in the way described above.

2The fact that f0 is restricted this way means that non-injective functors are among the functors
that cannot be described by the Functor typeclass.
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Like f0 for functors, m is simply the type constructor of the monad. More
interesting are return and ?. As can be seen from the definition of return, it
maps an element of a type to a corresponding element of the monadic type.
The first monad rule implies that ?(returnb) . ? (f) = ?(f), the second one
is ?(f) . returna = f which show similarities to the concept of left and right
identity respectively.
To give an example: for the list monad in Haskell, returna(x) = [x].

a b

m a m b

f

? f

Figure 3: Monadic Lifting

The ? function takes an element of a -> m b and maps it to an element of
m a -> m b. What the three monad laws say is that the resulting functions
should behave in a way that is somehow similar to what the original functions
did. Applying ? to returna should result in the identity function, and applying
returna before ?(f) should be equal to f . The latter statement is equivalent
to saying any two “paths” through the following diagram are equal.

a

m a m b

freturna

?(f)

Figure 4: Illustration of the Second Monad Law

The third monad law deals with composition, and states that lifting the
composition of an unlifted function with a lifted function is the same as com-
bining the lifted version of both functions

2.2 The Monad Typeclass in Haskell

Monads are defined essentially the same way in Haskell as the formal definition
given above, except for the fact that the equivalent of the ? function in Haskell
is called >>=, and can be defined in the following way in terms of ?:

x >>= f = ?(f) x

With that in mind, the following gives the definition of the Monad typeclass
in Haskell:
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a

m b m c m a m b m c
f

?(g) ?(f) ?(g)

?(g) . f ?(g) . ? (f)

?

Figure 5: Illustration of the Third Monad Law.
The dashed arrow shows the application of the ? function.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \_ -> y

The >>= and return functions have been described already. The >> func-
tion is useful for cases where we want to sequence two monadic actions whilst
discarding the value of the first one. This function is described further in the
examples given below.

An interesting function that is related to monads is the join function, which
can be defined as ?(idm a), meaning it has the type m( m a) -> m a. In short,
join removes one layer of monadic structure. It is possible to give an alternative
definition of a monad in terms of only return, join and fmap [14], but this is
not discussed futher in this article.

The monad laws given earlier in Haskell form are [17]:

1. x >>= return == x

2. return a >>= f == f a

3. (m >>= f) >>= g == m >>= (\x -> f x >>= g)

Often, the following law is also given which links monads to functors:

fmap f xs == xs >>= return . f

Note that == in this case does not refer to the == function of the Eq typeclass,
but to equality in the sense that both functions should give the same output
on the same input.

3 Examples of Monads

3.1 Identity

The first example of a monad described here is that of a trivial monad that can
be found in the mtl package [3].
If f::a->b, then ?(f) for the Identity monad maps Identity a to f a The m
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function is the type constructor. Return is equally simple: we set returna to
be Identity::(a->Identity a). From this, it follows that

return x = Identity x

Identity x >>= f = f x

The reader may verify that the monad laws hold for this trivial example.

3.2 Maybe

The Maybe monad is used for combining functions that can return some kind of
“failure” result (called Nothing), with the intent that once a failure has occurred
in a chain of such functions, the whole result should be Nothing. This article
assumes that the reader is familiar with the definition of the Maybe a type.
The monad instance declaration is fairly inituitive: we first imagine that we are
only dealing with failureless functions (i.e those that do not return Nothing).
Then we can inherit the definition of the Identity monad, but using the Just

constructor instead of Identity for return. As the definition of return has
thus been established, the only thing that still needs to be set is how >>= acts on
Nothing values. Clearly, Nothing >>= f = Nothing – once we have some sort
of “failure” result, this is not changed by trying to apply a function that acts
on non-failure types. The monad instance declaration of Maybe hence consists
of

return x = Just x

Nothing >>= f = Nothing

Just x >>= f = f x

To verify that the monad laws hold for this example, it needs to be shown that

1. x >>= return == x

2. return a >>= f == f a

3. (x >>= f) >>= g == x >>= (\y-> f y >>= g)

The first law clearly holds, as can be shown by making a case distinction on x.
If x is Nothing, then (by definition of >>=), x >>= return is also Nothing. The
alternative is that x is of the form Just a. But then x >>= return is return

a which is Just a (by definition of return).
The second law follows from the fact that return a >>= f is Just a >>= f

which is by definition f a, proving that the second monad law holds.
The third law can also be proven by making a case distinction on x. If x is
Nothing, then clearly both sides of the equation are Nothing. If x is of the
form Just a, then we know that (x >>= f) is f a, meaning the left hand side
can be re-written to f a >>= g. In the same way, the right side of the equation
becomes (\y -> f y >>= g) a. Application results in (f a >>= g), proving
that the third law holds.
An example for usage of the Maybe monad is a “safe” divide 12 by x function.
If x is not 0, then the function should return Just (div 12 x), otherwise it
should return Nothing. In other words, f x = if x == 0 then Nothing else

Just(div 12 x). If we want to chain several of these function and apply them
to a value, we could do:

return 2 >>= f >>= f >>= f
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This would result in the value of Just 6. But for the following

return 13 >>= f >>= f >>= f

the result is Nothing, as the first application of f returns Nothing, meaning
that the other fs do not affect the result.

3.3 List

The List monad is used to model composition of non-deterministic functions.
In this context, the term “non-determinism” is used to refer to functions that
return a list of results, which can be interpreted as the set of possible return
values for a function [8, p. 233]. Composing two non-deterministic functions
should therefore result in a function that returns a list consisting of the con-
catenation of all lists returned by the second function when applied to each of
the results of the first function. More formally, if f :: a->[b] then ?(f) :: [a]->[b],
so that ?(f) xs = concat (map f xs), which results in the definition of the
>>=:

xs >>= f = concat (map f xs)

The definition of return is so that return yields an element in a minimal List
context, i.e.

return a = [a]

3.4 Functions as Monads

In Haskell, the type (->) r is a Monad. The relevant instance declaration is
[8, p. 311]:

instance Monad ((->) r) where

return x = \_ -> x

h >>= f = \w -> f (h w) w

This Monad is also refered to as the reader monad, as the functions that are
combined with this monad “read from a common source”[8, p.312]. To illustrate
this, consider the following to functions as an example:

f = do

x <- (+5)

y <- (/2)

return (x * y)

g x = (x + 5) * (x / 2)

Note that f and g describe the same function. The reader monad makes it
possible to combine functions that are missing one parameter in a way that
the resulting function passes its parameter as the parameter to each of the
functions. This can be interpreted as combining functions “with context”,
where the context is the missing parameter[8, p. 312]
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4 Do Notation

Due to the fact that certain indiomatic constructs often come up when program-
ming with monads, Haskell provides the so called “do notation” as a syntactic
construct specifically for working with monads. Do notation makes it simple to
write functions consisting of nested structures of >>= with a lambda-expression
as the second argument [12, Chapter 14]. For example, the following function
could be used to calculate the cartesian product of two lists3:

cartesian_product xs ys = xs >>= (

\x ->

(ys >>=

\y-> return (x,y)

)

)

When written in do notation, each lambda term of the form zs >>= (\z ->

f(z)) is written as z <- zs; f(z) [15], where the semi-colon can also be re-
placed by a newline. Note that the expression f(z) is used here to denote an
arbitary expression that may depend on z. The keyword do is used to mark the
start of a block of do notation. Applying this rule to the cartesian product

function above leads to the following program, which is far shorter and also
easier to read:

cartesian_product’ xs ys = do

x <- xs

y <- ys

return (x,y)

What is also interesting about this way to write the product function is the
fact that using return instead of the [] type constructor results in a function
that is not specific to just lists but that can be used on other monadic types.
For example, we can use this product on Maybe types to obtain a function that
gives back Nothing if either of the parameters is Nothing, but otherwise returns
a pair of values wrapped in a Just constructor.
It should be noted that if an expression that was converted to do notation used
>>, then expanding this using the default definition of >> can result in a line
that does not depend on any of the other parameters. However, it is clear that
such a line can still affect the output of the function, as can be seen in the
following example of a function that returns the empty list:

empty_list xs ys = do

x <- xs

y <- ys

[]

return (x,y)

Another way to write a function like this would be

empty_list’ xs ys = do

x <- xs

y <- ys

3Recall that return (x,y) is the same as [(x,y)] for the list monad
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z <- []

return (x,y)

This highlights the fact that “do notation” is not a way to write an imperative
program in Haskell, but rather a way to write programs that make use of
monads. Another example of do notation would be the following function,
which divides the input x first by y and the result of that then by z, but
returns Nothing if any divisor was zero. Note also the syntax for using let

within do notation.

safediv x y = if y == 0 then Nothing else Just(div x y)

safedividetwice x y z = do

let somename = x

u <- safediv somename y

q <- safediv u z

Just q

5 Monadic Combinators

Haskell provides a wide range of functions for dealing with monads. Some (but
not all) will briefly be introduced here, due to the fact that, like do notation,
they make it easier to write succint monadic code. These functions can be
found in the Control.Monad package of base [1].

5.1 liftM

The functions of the form liftM, liftM2, liftM3,. . . are used to “Promote a
function to a monad, scanning the monadic arguments from left to right” [1].
liftM is the same as fmap[17]. liftM2 is a generalisation of the cartesian product

function shown in the section above, its implementation is [2]:

liftM2 f m1 m2 = do

x1 <- m1

x2 <- m2

return (f x1 x2)

The cartesian product function described above can be rewritten to product

= liftM2 (:). The functions liftM3, liftM4, ... liftM5 extend this to func-
tions with more parameters.

5.2 sequence

The sequence function has the type Monad m => [m a] -> m [a], which indi-
cates that it turns a list of monadic values into a monadic value over a list. For
example, sequence [Just 1,Just 2,Just 3] returns Just [1,2,3], but sequence
[Just 1,Just 2,Just 3,Nothing] gives Nothing. Its implementation is:

sequence [] = return []

sequence (m:ms) = do {x<-m; xs <- sequence ms; return (x:xs)}
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6 The IO Monad

The IO monad makes it possible to combine actions that deal with input and
output. Monads were only introduced for IO in 1996 [6], the other models for IO
considered before that being Streams and Continuations [6], but it was monadic
IO that was finally included in Haskell. IO can be used like any other monad.
The type IO a can be viewed as a “computation”, that when run, produces
a value of the type a, and possibly has side-effects on the outside world [6].
Using >>= (or the equivalent do notation), makes it possible to sequence these
computations in a way that allows the order in which they are performedi to
be specified. This is important for IO, because unlike with regular functions,
we do not want the compiler to reorder IO actions like it could with functions
that do not have effects [5]. Due to the type signature of the >>= function,
the type system also clearly separates those sections of a program that result
in an IO action from the pure sections of the program4. A simple example
of an IO program is one that reads in a line of text, and then outputs this
line. Haskell provides the getLine :: IO String function for reading a line
from standard input, and the putStrLn :: String -> IO () for writing a
line to standard output. Using monads, the two functions can be combined
by writing getLine >>= putStrLn, giving the desired program. To convert the
string to uppercase in between, getLine >>= (\x -> putStrLn (map toUpper

x)). Using do notation makes this more readable:

do

x <- getLine

putStrLn $ map toUpper x

Due to the outward appearance of do notation, this program could be mistaken
for an imperative program. However, it should be stressed that this is not the
case, rather IO is simply an instance of Monad. Highlighting this is the fact
that the monadic combinators described above can be used on IO like on any
other monad. For example, sequence $ replicate 5 getLine creates an IO

action that reads in 5 lines from standard input, and gives back a list of String
(wrapped in IO) containing these lines.

7 Conclusion

In Conclusion, it can be seen that monads can be used in a variety of settings,
ranging from nondeterminism to IO. Using Haskells do notation and monad
combinators makes it possible to write programs that make use of the context
provided by a monad, allowing the programmer to not have to explicitly write
that which the monadic context does, making programs more readable. Mon-
ads can also be combined, though this is has not been addressed in this article.
For example, monad transformers can be used to define monads that combine
the features of two monads into one[16]. An alternative to using monad trans-
formers that is less restrictive when dealing with the interaction of effects is the
use of extensible effects[7].

4This excludes ‘unsafe’ functions such as unsafePerformIO
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