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Figure 1: Two of the densest packings for equivalent spheres

1 Statement of the Theorem

The Kepler Conjecture states that there is no arrangement of equally sized spheres
in the three-dimensional Euclidean space with a higher average density than the
cubic close packing (also called face-centered cubic packing) and the hexagonal
close packing (see figure 1). Both of these have an average density of π/

√
18

(around 74.05%). The theorem does not claim uniqueness of a densest packing.

The density of an infinite packing V is defined as the limit of the density obtained
within finite spherical containers as the size of the containers grows to infinity.
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2 History of the problem and its proof

The Kepler Conjecture was presumed by the famous mathematician Johannes
Kepler (1571-1630) in the early 17th century in connection to the question how to
store cannon balls most efficiently. It is the oldest problem in discrete geometry and
was part of Hilbert’s 18th problem. In 1950, Fejes Tóth offered a proof strategy for
the Kepler Conjecture and considered the use of computers to study the problem.
In 1998 Samuel Fergusen and Thomas Hales proved the statement to be true, but
only published the full proof in 2006, since the referees had trouble to reliably
check every step of the complex computer proof. Though the reviewers came to
the conclusion that the proof was essentially accurate, they were not absolutely
sure of that. At the Joint Math Meetings in Baltimore in 2003, Hales announced
the Flyspeck project1, with the idea of formalizing the text parts of the proof, as
well as the calculations implemented in code. The project finished its work in
August 2014.

3 The proof assistants

For the verification of the proof three proof assistants were used: HOL Light, Is-
abelle and HOL Zero.
HOL Light is considered to be extremely reliable due to its design and compactly
written kernel, and was thus used for the majority of the proof. It is especially
useful for the Flyspeck project since it already contains large libraries of proven
results including differential calculus and point-set topology on Rn. The program
is based on the language OCaml and has a special syntax for mathematical ex-
pressions that makes it less vulnerable to imprecisions of machine arithmetic than
OCaml.
The proof assistant Isabelle/HOL is very similar to HOL Light with the addition
of some properties, most importantly computational reflection, which is neccessary
for the tame graph classification, but not supported by HOL Light. Isabelle also
supports a module system and type classes, and can export certain terms as ML,
execute them and reintegrate the results as theorems.
HOL Zero is only required for a second check of the main statement.

1The name originates from the acronym FPK for Formal Proof of the Kepler Conjecture.
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4 Formalization of the theorem

As the density of a packing V is defined via a limit, the statement is formalized by
determining the density over a finite spherical container with an error term that,
divided by the total volume, tends to zero for growing containers.
The density is scale invariant (as it is a ratio of volumes) and one can w.l.o.g.
assume that the spheres in the packing are unit balls. These can be identified
with their centers, such that the packing is represented by a set of points. This
immediately implies that the distance between any two objects in V is at least two
(the diameter of one sphere) or else the objects are identical. In HOL Light this
is expressed as follows:

|− packing V <=>
( ! u v . u IN V /\ v IN V /\ d i s t (u , v ) < &2 ==> u = v )

The |− indicates the beginning of a theroem, ! and ? symbolize the ∀ and ∃ quan-
tifiers, & the embedding of natural numbers in the real numbers (i.e. &2 = 2.0),
/\ is the logical ∧, and ==> and <=> stand for ⇒ and ⇔. As one can see, the
mathematical signs are usually approximated by ASCII characters.

The statement of the Kepler Conjecture is captured in the constant
the kepler konjecture and looks like this

|− t h e k e p l e r c o n j e c t u r e <=>
( !V. packing V

==> (? c . ! r . &1 <= r
==> &(CARD(V INTER b a l l ( vec 0 , r ) ) ) <=

pi ∗ r pow 3 / s q r t (&18) + c ∗ r pow 2)
)

”packing” is the class of all packings, ”CARD” the cardinality of a set, ”INTER”
the intersection of sets and ”ball(vec 0,r)” a sphere with radius r around the center
of the Euclidean space.
This translates to: For every packing V there exists a constant c such that for all
constants r bigger or equal to 1, the cardinality2 of the intersection of V and the
sphere with center 0 and radius r is less than or equal to π ∗ r3/

√
18 + c ∗ r2.

2The cardinality of the intersection is always finite, because the packing is represented by
discrete points with minimum distance two.
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The proof of this statement can naturally be divided into four main parts, the
formalization and three different parts of calculations, specified in HOL Light un-
der the following names:

1. the nonlinear inequalities : A list of nearly a thousand nonlinear inequalities

2. import tame classification: Each possible counterexample to the Kepler Con-
jecture can be encoded as a plane graph satisfying a set of conditions, which
classify it as tame. An exhaustive computer search has generated the finite
list of tame plane graphs (up to isomorphism). It is necessary to show that
every tame plane graph is isomorphic to one of these graphs.

3. linear programming results : A large collection of linear programs. These are
shown to be infeasible, which disproves the existence of the counterexamples.

Due to the sheer size the whole proof was not obtained in a single session of HOL
Light. Instead another theorem was formalized that represents the formalization
of the text part and the proof of the linear programming and explicitly assumes
the other two parts:

|− t h e n o n l i n e a r i n e q u a l i t i e s /\ i m p o r t t a m e c l a s s i f i c a t i o n
==> t h e k e p l e r c o n j e c t u r e

5 Proof of the theorem

There are two versions of the proof, the original proof and the blueprint proof. The
formalization of the proof was developed simultaniously to the blueprint proof and
follows it closely.

5.1 Outline of the proof

Consider an arbitrary packing V of unit balls in the Euclidean space with the prop-
erties necessary for it to be a counterexample. Now one reduces the problem with
infinitely many spheres to a one with finitely many by partitioning the Euclidean
space into so called Marchal cells.
A sphere on the boundary of the cell is called a vertex, a line segment on the
boundary of the cell between two vertices is called an edge. Some edges are called
critical if they satisfy a specific length condition, and cells that share a critical
edge form a cell cluster.
Each cell X (and one of its critical edges) in a cell cluster gets assigned a real
number Γ(ε,X), depending on its volume and the angles between and the lengths
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of the cells edges.

To represent the Kepler Conjecture as a local optimization problem one uses the
cell-cluster inequality

∀ critical edges ε :
∑
X∈C

Γ(ε,X) ≥ 0

where C is the cell cluster induced by the packing, and the local annulus in-
equality :
The constant ball annulus is defined as the set A = {x ∈ R3 : 2 ≤ ‖x‖ ≤ 2.52}.
As A is compact and V discrete the intersection is finite. For f(t) := 2.52−t

2.52−2 (this
function decays from 1 to 0 on A) the local annulus inequality for V ⊂ A is defined
as ∑

v∈V

f(‖v‖) ≤ 12

where v are the vertices.

With these inequalities the Kepler Conjecture (which is a problem about volumes
and densities) can be transformed into a problem of distances between spheres and
leads to this intermediate result:

|− t h e n o n l i n e a r i n e q u a l i t i e s /\
( !V. c e l l c l u s t e r i n e q u a l i t y V) /\
( !V. packing V /\ V SUBSET b a l l a n n u l u s

==> l o c a l a n n u l u s i n e q u a l i t y V)
==> t h e k e p l e r c o n j e c t u r e

That means that if the nonlinear inequalities and the cell cluster inequality are
proven3 all that is left to show, is that the local annulus inequality holds.
The local annulus equation is proven by showing that every possible counterexam-
ple is infeasible. One assumes there is a counter example V4. Since A is compact
we can assume V has special properties that we sum up under the term contra-
vening. These imply that V is isomorphic to a special combinatorical structure
called tame planar hypermap (which one can imagine as plane graphs with certain
restrictions). The number of the hypermaps is finite up to isomorphism which
leads to a finite number of possible counterexamples. For each given tame planar

3The proof of the cell-cluster inequality is a computer calculation that reduces it to nonlinear
inequalities.

4It is sufficient to consider V with at most 15 elements.
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hypermaps H one considers all associated contravening packings V. All of these
violate the local annulus inequality by definition.
The conditions on V can be expressed by a system of nonlinear inequalities which
gets relaxed to a system of linear inequalities that is shown to be infeasible via
linear programming techniques. One concludes that the nonlinear system is incon-
sistent and thereby contradicts the existence of the corresponding counterexample.
Exhaustive repetition of this procedure leads to the refutation of every possible
counterexample and concludes the proof.

5.2 The nonlinear inequalities

Nearly all nonlinear inequalities in the Flyspeck project have the form

∀x, x ∈ D ⇒ f1(x) < 0 ∧ · · · ∧ fk(x) < 0

with n ∈ N, n ≤ 6, D = [a1, b1] × · · · × [an, bn] and x = (x1, . . . , xn). For the
remaining inequalities k equals 1 and the inequality is not strict. The inequalities
contain basic arithmetic operations, square roots, trigonometric functions and the
analytic continuation of arctan(

√
x)/
√
x to the region x > −1. For every x ∈ D

at least one fi is analytic around x (and takes a negative value).

The inequalities are handled by using interval arithmetic, i.e. numbers are ap-
proximated by an upper and a lower bound, for example [3.14, 3.15] as an approx-
imation of π. This is only possible if the arithmetic operations are defined over
intervals: Let IR denote the set of intervals over the real numbers. The interval
extension f : IR→ IR of f : R→ R satisfies

∀I ∈ IR, {f(x) : x ∈ I} ⊂ F (I)

and can easily be extended to Rk.

Arithmetic operations are similarly expanded for intervals, for example the sum of
intervals

[a1, b1]⊕ [a2, b2] = [a, b]

for some a ≤ a1 + a2 and b ≥ b1 + b2.
5 Other arithmetic operations are defined

analogously.
This natural way to define interval expansions can be imprecise and often needs
improvement. An easy way to improve them is to devide the interval into subin-
tervals and evaluate the function on all of them. Though this is a possibility, it

5Keep in mind that ⊕ is not defined as [a1 + a2, b1 + b2] since there might be differences due
to imprecision.
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increases the number of operations significantly, especially for multivariate func-
tions.
For this reason the procedure implemented in OCaml and HOL Light works with
interval extensions based on Taylor approximations instead. Even then it is some-
times required to work with subdivisions to get sufficiently good approximations.
Another advantage of Taylor polynomials is the possibility to easily prove mono-
tonicity, by expanding the derivative over an interval. If the target interval of the
derivative does not contain zero, the maximum value over the interval occurs on
its boundary. This can be used to reduce the verification of the inequality on a
rectangle (the cartesian product of intervals the inequality is defined on) of dimen-
sion k to a rectangle of dimension k − 1.

Through partitioning of the domains the several hundred nonlinear inequalities
become more than 23000. With a verification time of approximately 5000 hours
in HOL Light this is the most laborious part of the proof6 (the other two sets of
calculations can be verified in less than a day). This is a problem, because the
inequalities have to be obtained in several sessions, but in the regular version of
HOL Light it is not possible to transfer a theorem (in this case the correctness of
the inequality) without a reconstruction of the whole proof. Therefore a slightly
modified version of HOL Light was used to combine the results that were obtained
in parallel sessions of calculation.

5.3 Tame classification

Classifying tame plane graphs was the first major success of the Flyspeck project.
The tame plane graphs encode the possible counterexamples to the Kepler Con-
jecture as plane graphs. The computer-generated list of tame graphs is collected
in a text file called the archive and can be imported into the proof. The goal is to
formalize the following completeness theorem in Isabelle/HOL

` ”g ∈ PlaneGraphs” and ”tame g” shows ”fgraph g ∈' Archive”,

which means that every tame plane graph is isomorphic to a graph appearing in
the archive. The formalization of the graph includes a list its faces (represented by
their nodes, which are again represented by integer indices). fgraph is a function
that reduces the graph to the list of faces. To show the completeness of the
archive it is neccessary to enumerate all tame plane graphs. This is done through
the functional programming language in HOL and leads to a set of graphs called
TameEnum. To prove completeness of TameEnum one has to show that it contains

6But since most of the vericfications were done in parallel with 32 cores it took less than a
week in total.
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every tame graph and that every graph it contains is isomorphic to a graph in the
archive. Formally that looks like

` fgraph ’ TameEnum ⊆' Archive

This formula can automatically be proven by Isabelle through computational re-
flection.

5.3.1 General enumeration of plane graphs

Plane graphs are defined algorithmically by starting with a polygon and subse-
quentially adding loops to it. This leads to a natural way of enumerating them.
The initial polygon serves as a seed graph which creates a partition of the plane
with a final (outer) and a nonfinal (inner) component (final means the algorithm
is not allowed to further divide the face). The nonfinal component can then be
subdivided in several ways to create a new graph and so on. Through this process
a forrest of graphs is defined whose leaves are final graphs. An executable function
called next plane maps a graph to the set of graphs obtainable by dividing one
face. In Isabelle/HOL the set of final graphs reachable from some seed graph in
finitely many steps is called PlaneGraphs.

5.3.2 Enumeration of the tame graphs

There are two crucial properties for a graph to fulfill to be called tame: The faces
have to be triangles or hexagonal and the admissible weight has to be bounded.
One can show that this is also sufficient to prove the finiteness (up to isomorphy)
of tame plane graphs. The enumeration is derived from the enumeration of plane
graphs with elimination of all non-tame final graphs and nonfinal graphs that do
not produce any tame ones. The pruning7 criteria can be implemented into thep-
rogram with various degrees of complexity. The weaker the criteria the easier they
are to justify, but also the longer is the running time of the algorithm and vice
versa. For the formalization process a modified version of the function next plane
called next tame is used, that applies the described pruning procedure. To guaran-
tee correctness the used algorithm works with approximations that never eliminate
a tame graph, but might produce nontame graphs, so no possible counterexample
is missed. As a result some fake counterexamples may be produced. Luckily these
get eliminated in later steps. The set of tame graphs produced with the function
next tame is called TameEnum.

While most of the proof of the Kepler Conjecture was done in HOL Light, the tame

7This means eliminating graphs from the tree.
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graph classification was done in Isabelle/HOL, since HOL Light does not permit
computational reflection and it is not possible to import results from Isabelle to
HOL Light automatically. For this reason both systems are used and HOL Light
treats the parts proven by Isabelle as assumptions. Formally this is represented as

|− i m p o r t t a m e c l a s s i f i a t i o n <==>
( ! g . g IN PlaneGraphs /\ tame g ==>
fgraph g IN simeq arch ive )

The right-hand side is exactly what was expressed above. The terms PlaneGraphs,
tame, archive, In simeq and fgraph in HOL Light are basically just translations of
the corresponding definitions in Isabelle.

5.4 Linear programs

The infinitely large potential counterexamples are first reduced to finite ones and
then encoded as tame planar hypermaps. For every hypermap there is a list of
inequalities (mostly nonlinear) the corresponding counterexamples have to satisfy.
If one can show that the system of inequalities is infeasible, the counterexample
can be eliminated.
By replacing nonlinear terms in the inequalities with new variables it is possible
to obtain linear relaxations. Showing that a linear program is infeasible proves
inconsistency of the original inequalities and the nonexistence of the contravening
packings associated with the hypermap. Since there are essentially finitely many
tame planar hypermaps (as shown in the tame graph classification theorem) all
possible counterexamples can successively be ruled out.
Generating the linear programs from the nonlinear inequalities is the first step of
their verification procedure. To demonstrate the transformation from nonlinear to
linear inequalities we have a look at the following example:
Say one has the inequalities x + x2 ≤ 3 and x ≥ 2. Substitute y := x2. This
changes the first inequality to x + y ≤ 3 and the second implies y ≤ 4 and thus
x+ y ≥ 6, a contradiction.

Instead of solving inequalities over irrational constants directly, the proof assis-
tant solves an implied rational inequality. For instance x ≥ π implies x ≥ 3.14
(and so on). These are then modified to inequalities over integer coefficients by
multiplying with powers of 10.

The second and last step is the introduction of free variables with values de-
pending on the properties of the associated tame planar hypermap. Thus every
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hypermap produces a linear program that is checked for feasibility. But due to the
approximate values of the integer inequalities only about half of the inequalities
can directly be proven to be infeasible. For the other half it is necessary to split the
inequality into several cases which lead to more precise relaxations, i.e. introduce
new inequalities of the form x ≤ a and x ≥ a and check these separately for a
constant a. This is automatically done by the proof assistant.
There are ultimately 43078 cases to consider, which can be verified in about 15
hours on a 2.4 GHz computer.
While most of the linear programs are generated and solved automatically, some
require a manual formal proof.
Applying this procedure for all possible counterexamples and subsequently elimi-
nating them concludes the proof of the Kepler Conjecture.

6 Conclusion

In this proof the proof assistants mostly replace the human referees, since deeper
mathematical insight is scarcely needed. Instead the proof can be checked by suf-
ficiently trained users of HOL Light and Isabelle. The most important parts for
reviewers to check are whether or not the right theorems are formalized and if all
assumed axioms are permissable. The biggest issue with this proof is that it was
not obtained in a single session but in several, over two different proof assistants.
This makes it essential to meticulously survey the translation of statements from
Isabelle to HOL Light.
What made the Kepler Conjecture unprovable for a few hundred years was the
sheer amount of counterexamples one has to refute. Solving of all the calculations
demanded a calculation capacity not available for most of the time since the ques-
tion arose, and even then the verification was immensely intricate.
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