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What is a µ-kernel?



What is a kernel anyway?

• Necessary abstractions for applications
• Interaction via system calls
• Loaded into protected memory region
⇒ Bugs are potentially fatal
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Definition: Microkernel

A concept is tolerated inside the µ-kernel only if mov-
ing it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation
of the system’s required functionality.

— Jochen Liedtke
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Monolithic kernels and µ-kernels
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The seL4 µ-kernel

• Member of the L4 µ-kernel family
• Correctness verified with Isabelle
• High performance
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Design process of seL4



Design process for verification
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Formal methods of the
correctness proof



Hoare logic

P︷ ︸︸ ︷
{x = 1}

C︷ ︸︸ ︷
x := x + 1

Q︷ ︸︸ ︷
{x = 2}
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More Hoare logic

{x = 0 ∧ x = 1} y := 2 ∗ x {

x and y are even

}
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More Hoare logic

{x is even} y := 2 ∗ x {

x and y are even

}
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More Hoare logic

{x is even} y := 2 ∗ x {x and y are even}
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Partial correctness of Hoare logic

{ } WHILE true DO c { }
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Data refinement

A concrete system C refines an abstract specification A if the
behaviour of C is contained in that of A.
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Data refinement: Examples

• The scheduler selects runnable threads
• System calls return non-zero values on error
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Layers of the correctness proof



Proof structure

Executable Specification

Abstract Specification

C implementation (Semantics)

Haskell prototype

C implementation

Isabelle/HOL

Proof

Automatic translation
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Abstract specification

The abstract specification is the most high-level layer still fully
encapturing the behaviour of the kernel.
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Scheduler on the abstract level

schedule ≡ do
threads ← all_active_tcbs;
thread ← select threads;
switch_to_thread thread

od OR switch_to_idle_thread
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Executable specification

Fill in the details left open by the abstract specification.
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Haskell implementation of the scheduler

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread' (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread' prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread'' q

chooseThread'' thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Get runnable thread with highest
priority using chooseThread' or
schedule idle thread.

Call chooseThread to select next
thread.

Try to find runnable thread in
Queue.

Check if thread is runnable and act
accordingly.
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C implementation

Translate the Haskell implementation to C.
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Machine Model

invalidateTLB :: unit machine_m => unit machine_m

invalidateCacheRange ::
unit machine_m => word => word => unit machine_m
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Data refinement for state machines

σ1 σ2 σn
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Refinement by forward simulation
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Example for forward simulation

On the Board
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Types of state transitions

Kernel
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Mode

Idle
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Main result
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Conclusion



Expenditure of time

Artefact Effort (py) Total (py)

Haskell impl. 2.0 2.2
C impl. 0.2

Generic framework 9.0

20.5
Abstract spec. 0.3
Executable spec. 0.2

Refinement MA ↔ME 8.0
Refinement ME ↔MC 3.0
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How does the effort compare?

• EAL7: 1000$/LOC ↔ seL4: 370$/LOC
• L4 Pistachio kernel: 6 py ↔ seL4 kernel: 2.2 py
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Changes due to verification
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What was achieved?

• Correctness proof down to binary level
• Trust in hardware

• What about Spectre and Meltdown?
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The future of seL4

• More architectures
• Multicore support

• Exclude timing-channel attacks
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Questions?
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