
Machine Learning on Knowledge Bases

Marcus Pfeiffer

19.06.2018

1



Contents

1 Introduction 2

2 Machine Learning for Premise Selection 3
2.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Dependencies in the knowledge base . . . . . . . . . . . . . . . . . . 4
2.1.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Machine Learning Algorithms for Premise Selection . . . . . . . . . . . . . 7
2.2.1 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Kernel-based Learning . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Performance in Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 MaSh/MeSh vs MePo in Sledgehammer . . . . . . . . . . . . . . . . 11

3 Summary and Outlook 12

1



1 Introduction

In this paper, we will get to know machine learning based algorithms for improving the
performance of Automatic Theorem Provers (ATPs) and Interactive Theorem Provers
(ITPs) (in particular of Isabelle/HOL and Mizar). One problem in Theorem Proving
where machine learning concepts can fruitfully be applied to is the problem of finding the
premises needed to prove a given goal in a large set of available facts. This problem is
known as Premise Selection or Fact Selection. It can be seen as a ranking problem of the
available facts in the knowledge base in terms of usefulness, where the highest ranked ones
are selected [BGK+16].

The importance of good Premise Selection comes from the fact, that automatic theorem
proving is usually based on saturation/resolution [Sch13] implementing the superposition
calculus or Satisfiability Modulo Theories (SMT) and although there are search heuristics
for the proofs done by the ATPs this is still a hard problem [UHV10]. Thus it is crucial
for finding a proof, that the premise set, that the ATP deals with, is as small as possible
while containing the premises that are sufficient to prove the goal.

One important task that the success of Premise Selectors implementing machine
learning algorithms relies on is the good extraction of features from the given data that
the algorithms then deal with. In our case the data will be large knowledge bases and
the features will be the proof dependencies as well as the symbols and structure of the
formulas themselves. This data preprocessing will be the content of the first part of the
paper.

In the second part we will consider as examples of machine learning algorithms the
Naive Bayes algorithm, a k-Nearest Neighbor algorithm and a kernel-based algorithm
applied to the Premise Selection problem. The machine learning algorithms get the features
that we extracted in the first part, a proof goal and visible facts as input and return a
predetermined number of facts ordered by their estimated relevance. They can be handed
to the ATP directly respectively after translation to the appropriate syntax. By using
machine learning, we hope to achieve improvements in the performance of ATPs compared
to previous Premise Selection algorithms.

The presented algorithms are used to automatically reason in the Mizar Mathematical
Library (MML) [AKT+11] and the Isabelle/HOL library [BGK+16]. In Isabelle, the tool
that does the Premise selection, translation to the ATPs syntax and reconstruction of
found proofs is called Sledgehammer.

Finally, we compare the performance of MePo, a purely symbol based Fact Selector
with the performance of MaSh [KBKU13], the machine learning Fact Selector option in
Sledgehammer, and with the one of MeSh, a combination of MaSh and a symbol based
Premise Selector similar to MePo.

The main sources of this paper are [BGK+16] and [AKT+11]

2



2 Machine Learning for Premise Selection

Let us first state a comprehensive definition what Premise Selection is.

Definition 1 (Premise selection Problem). [AKT+11, 195] Given an ATP A, a large
number of premises P (stored in the knowledge base) and a new conjecture c, predict
those premises from P , that are likely of use to A for constructing a proof for c.

A first example illustrates the problem and emphasizes the importance of careful
feature extraction and the reason to use machine learning methods. We want to evaluate
what the relations between the goal and its premises are to find out what the indicators
for useful facts given the proof goal are.

Example 1. The following proof goal is taken from the verification of cryptographic
protocols by Paulson [Pau98].

used[] = used evs

A straightforward proof uses the following lemmas:

used Nil : used[] =
⋃
B

parts(initStateB) (1)

initState into used : X ∈ parts(initStateB) =⇒ X ∈ used evs (2)

subsetI : (
∧

x.x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B (3)

UN iff : b ∈
⋃
x∈A

Bx←→ ∃x ∈ A.b ∈ Bx (4)

By looking at the premises that the proof relies on, we can imagine why the symbol-based
heuristic from MePo underestimates their relevance. Guessing lemmas by only looking
at the symbols as indicators for useful premises might be misleading, since parts,

⋃
and

initState do not appear as symbols in the goal. In fact, MePo ranks (1) 3742th and hence
does not select it. It is not directly clear from this small context why, but MaSh and MeSh
rank (1),(2),(3) and (4) within their first 35 respectively 77.

Nevertheless, in the algorithms that are presented later we will still take into account
the intuition that facts that share similar features and have a similar structure might be
useful to prove each other, although this is not the case in this example.

2.1 Data preprocessing

Having this example in mind, we try to find features in the knowledge base that improve
the accuracy of the ranking by the Premise Selection algorithm. The features that we will
consider are proof dependencies as well as syntactic features such as the structure of the
theorems or symbols occurring in the facts.

Large knowledge bases today can be general ontologies such as SUMO [SUM] and
CYC [CYC]. We will however have mathematics-specific knowledge bases such as the
Mizar Mathematical library [MML] and the library of Isabelle/HOL in mind and will test
the performance on them. In this part, we are not yet concerned with the actual proof
goal.

3



2.1.1 Dependencies in the knowledge base

The first information included in the knowledge base that we consider is the information
which lemmas and theorems a theorem needs as premises to be proven. The idea is to
capture the structure of the proof for all facts in the knowledge base. The algorithms
will work on the assumption that the proofs for theorems that have a similar structure
and similar symbols are similar. In other words, facts that are needed to prove a theorem
similar to the proof goal might be helpful to prove the proof goal as well. The following
definition makes the concept of a dependency precise:

Definition 2 (Dependency [AKT+11] [AMU11]). A definition or theorem T depends on
some definition, lemma or theorem T ′ (T ′ is a dependency of T ), if T ′ is needed for T in
terms of well-formedness, justification, or provability of T

A subtle assumption when using the proofs and dependencies that a human has written
as information for the machine learning algorithms is, that these dependencies are useful
for finding an ATP proof as well [AKT+11, 195].

Proof dependencies are stored and computed differently in different systems. We go
into detail on extracting the proof dependencies at the example of the Mizar system.

When looking at a Mizar proof we can distinguish between the steps a human has
explicitly written down and the steps that the Mizar proof assistant has implicitly added
to ensure the correctness.

To find out which premises are needed for the proof, we have to look at the premises
needed in each step, however this task is not trivial since we do not know which premises
the Mizar prover has taken into account.

A first heuristic to guarantee a sufficient premise set would be the following: Take all
the premises in the human written proof and then add the facts that could have been
added by all kinds of possible mechanisms that the prover has build in to find the missing
prove steps.

This first heuristic may include a lot of premises that are not actually needed for the
proof because we do not need all the premises that the mechanisms could generate in
general. Furthermore in Mizar all definitions and theorems are collected in articles and for
a needed premise, the whole article is included as dependency.

A procedure suggested in [AKT+11] to remove unnecessary premises from the set of
dependencies first orders the premises given by the first heuristic which we call in the
following context items. Then for each item we check whether the verification works
without it and if it does, we remove it and leave it in the set otherwise. This is still an
overestimation, i.e. we might have redundant premises left (e.g. the algorithm depends on
the initial enumeration), but clearly we do not make the dependency set bigger.

We express the information about the dependencies in a matrix to make use of them
in the training part of the machine learning algorithm:

Definition 3 (Proof matrix). Let Γ be the set of (first order) formulas that appear in the
knowledge base. For p, c ∈ Γ define µ : Γ× Γ→ {0, 1} by

µ(c, p) =

{
1 if p is used to prove c,

0 otherwise

4



i.e. if p is used to prove c, then there is a 1 in column c and row p and we can additionally
define the set of used premises for a particular formula

usedPremises(c) := {p |µ(c, p) = 1}

The definition of dependency can be refined by the definition of a visibility, which
captures the fact that we do not need to consider those facts as possible premises from
the set of facts from the knowledge base that appear after the goal in the proof text. This
distinction enables improvements in the algorithms.

Definition 4 (Visibility). Visibility is a partial order on the facts and encodes the fact,
that a goal cannot be proved using facts that appear later in the proof development.

In Isabelle it is computed by using the theory extension order on the theory type and
then using this preorder to make it into a partial order. The set of dependencies is a subset
of the visible facts, namely of those facts, that are used to prove the goal. [BGK+16]

2.1.2 Feature extraction

Besides the information that we get from looking at the proof dependencies, we will use the
features that we get from analyzing the formulas themselves. These kind of features will be
symbols and (sub)terms appearing in the formulas. It is important to note, that by using
the formulas symbols and structure as features, we assume that theorems with similar
symbols and structure are likely to be useful for each others proofs. As one might expect,
the information gained from this analysis depends strongly on the choice of features. In
addition to the symbols, we can use types or type classes to which terms in the formula
belong to. Furthermore, the theory in which the formula occurs may also be a relevant
feature. In [BGK+16] we find a more concrete receipt how we can use the formula’s
structure as a feature, namely by considering all patterns up to a given depth and replacing
variables with their type. The following two examples illustrate this structure extraction
first in a general function setting and second in the syntax of Isabelle.

Example 2 (General). For given depth 2, g (hx a) with x being a variable of type τ we
get the following structural features:

x a g g(h )
h hx h a h x a

which are simplified to
τ a g g(h)
h h(τ) h(a) h(τ, a)

The simplification is done because variable names may be different in different theories
and names do not give us information about the fact.

Example 3 (Concrete). Additionally we can use the features from the facts that the
human has explicitly given in the proof so far which helps if there are not many features
in the proof goal itself . In Isabelle this would be the facts after the keywords ”using”,
”from”, ”hence”,... [BGK+16]

5



For using these syntactic information in the algorithms later, we again store them in a
matrix.

transpose(map(map f) xss) = map(map f)(transpose xss), a lemma for lists has the
features:

map map(list list) fun
map(fun) map(map, list list) list
map(map) transpose list list
map(transpose) transpose(map) List
map(map, transpose) transpose(list list)

Additionally we can use the features from the facts that the human has explicitly given
in the proof text so far. This helps if there are not many features in the proof goal itself. In
Isabelle this would be the facts after the keywords ”using”, ”from”, ”hence”,... [BGK+16]

For using these syntactic information in the algorithms later, we again store them in a
matrix.

Definition 5 (Feature Matrix). Let T = {t1, ..., tm} be a fixed enumeration of the set of
features. Let Γ being the set of all formulas, define Φ : Γ× {1, ...,m} → {0, 1} by

Φ(c, i) =

{
1 if ti appears in c,

0 otherwise.

To consider information of the expressed features of a particular formula c ∈ Γ, we
define the feature function that maps the formula to its vector φ : Γ→ {0, 1}m given by:

φci = 1 ⇐⇒ Φ(c, i) = 1,

and the set of expressed features of a formula c

e(c) := {ti |Φ(c, i) = 1}.

Furthermore, we define the extended features of c to be the expressed features together
with the features of the facts that were proved using c

ē(c) = e(c) ∪
⋃

d such that c ∈usedPremises(d)

e(d)

for being able to define a ”finer” Naive Bayes algorithm.

As one additional information that the algorithms will make use of we assign weights
to the features, which express the rarity [BGK+16]. The assumption behind this is, that
facts that share rare features have a higher probability of being useful than facts that
share rather common features. For example, a function that we defined just in a particular
context in our self written theory and that appears in the theorem that we want to prove
should be taken much higher into account than a lemma about some frequently appearing
function, that also appears in the goal. A canonical weight is the inverse document
frequency [BGK+16, 8]. For a feature t, we write w(t) for the weight of the feature.

Regarding the question how these information are actually stored, [BGK+16] suggests
to store them as a tuple of the form (c, par(c), e(c), usedPremises(c)) where par(c)

6



specifies the predecessors of c w.r.t the visibility relation and shows how to extend it to
get all visible facts so we do not need to store all of them.

In general the choice is not canonical and the exact way of extracting the features differs
from one Premise Selection algorithm to another [BGK+16] [AKT+11] [USPV08] [HV11].

2.2 Machine Learning Algorithms for Premise Selection

The Premise Selection problem can be treated as ranking problem by considering the task
as providing a ranking of formulas by their predicted usefulness. For p, c ∈ Γ we denote
the classifier function by Relevancec(p) ∈ R which is the usefulness of p for proving c. The
Premise Selector selects p if Relevancec(p) is above a certain threshold. It is important to
note that we define for each formula p an own classifier Relevancep which gets as input all
formulas which have p in their visibility set. To test how good a classifier Relevancep is
for the facts in the knowledge base, we compare the result of the classifier to the actual
usefulness, given by the corresponding entry in the dependency matrix. The loss function
is a function l : R × R → R+. Examples are the 0-1 loss, which is 1 if x = y and 0
otherwise and the squared loss which is given by l(x, y) = (x− y)2 Given the loss function
l we define the expected loss E : R→ R for a premise p by

E(Relevancec(p)) =
∑
c∈Γ

l(Relevancec(p), µ(c, p))

In all the following algorithms, the goal is to find Relevancec(p) that takes a high value
whenever p is used to prove c and close to 0 whenever p is not used to prove x which is
just another way of saying that we want to minimize the expected loss.

2.2.1 k-Nearest Neighbors

In the setting of the k-Nearest Neighbors (k-NN) algorithm, we select those premises, that
are used to prove the facts, that are in some sense close to the goal (hence the name) and
also near goals themselves. We usually capture the nearness by defining a metric which has
a small value if two values are close and a large one if they are away. In our case it is easier
to make it the other way around and define nearness where higher values correspond to
closer formulas. This nearness depends, as one might expect, on the common features and
their weight. We define, for a given parameter τ1, a constant determined by experiments,
the nearness of two formulas a and b as:

n(a, b) =
∑

t∈e(a)∩e(b)

w(t)τ1

where e(a) are the expressed features and w(t) the weight of feature t as defined above.
Let N be the set of the k formulas that have highest nearness to a given goal c. We

call the elements of N neighbors.
For a given parameter τ2 that captures the difference of importance of the premises used

to prove the near neighbors and the near neighbors themselves, we define the relevance of
a visible formula p as follows:

7



Relevancec(p) =

τ2

∑
q∈N | p∈usedPremises(q)

n(q, c)

|usedPremises(q)|

+

{
n(p, c) if p ∈ N
0 otherwise

There are different things to note here: We take into account all of our information that
we described in the previous chapter. We therefore do not only use k-NN, which only uses
the features but extend it with the information about dependencies in the following way:
Each neighbor of the goal positively affects all of the neighbors dependencies, expressed by
the left summand, and, expressed by the right summand, positively affects the neighbor
itself, corresponding to the fact that dependencies as well as the theorem itself are useful for
proving a theorem [BGK+16]. This captures the intuition, that proofs of similar theorems
are often similar.

2.2.2 Naive Bayes

In the Naive Bayes (NB) setting we are interested in the probability

P (p is used in the proof of c)

To be able to compute that probability, we characterize c by its features e(c) and
approximate it by the conditional probability

P (p is used to prove c’ | c’ has features e(c))

The formulas c′, that we now use are, in contrast to a new goal c, proved and thus we
can use the information stored for them. We now restrict (for computational reasons) the
features that are allowed to appear in c′ and get

P (p is used in a proof of c’ |
features in e(c) appear in c’ , the ones in ē(p)-e(c) do not)

Naive Bayes is called naive because we assume the conditional independence of the
features, i.e. the appearance of two features/symbols in a formula is not related, which
of course is not true in general. We apply Bayes’ formula and use the independence
assumption to get the following product of probabilities:

P (p is used in the proof of c’)

·
∏

t∈e(c)∩ē(p)

P (c’ has feature t | p is used in the proof of c’)

·
∏

t∈e(c)−ē(p)

P (p has feature t | p is not used in the proof of c’)

·
∏

t∈ē(p)−e(c)

P (c’ does not have feature t | t is used in the proof of c’)

We can compute each of these four expressions from known dependencies. To do so
efficiently, the following factors are stored.

8



s(q, t) stores the number of times a fact q occurs as a dependency of a fact described
by feature t.

r(q) stores the number of times a fact q occurs as a dependency and K is the total
number of known proofs.

P (p is used in the proof of c’) =
r(p)

K

P (c’ has feature t | p is used in the proof of c’) =
s(p, t)

r(p)

P (c’ does not have feature t | p is used in the proof of c’) = 1− s(p, t)

r(p)

Finally, P (p has feature t | p is not used in the proof of c’) is the a priori probability
of p being used in a proof. Since this is very unlikely, we estimate it by a low, fixed
probability.

Now, taking the weights of features from the last step into account and by applying
the logarithm, we get the following:

Relevancec(p) = σ1 ln(r(p)) +
∑

t∈e(c′)∩ē(p)

w(f) ln
σ2s(p, t)

r(p)

+σ3

∑
t∈ē(p)−e(c)

w(f) ln

(
1− s(p, t)

r(t)

)
+ σ4

∑
t∈e(c)−ē(p)

w(f)

where σi are factors which were determined by experiments from the authors of
[BGK+16].

An implementation of naive Bayes is SNoW.

2.2.3 Kernel-based Learning

In contrast to the concept of the Bayes approach, we do not estimate some probability
when using kernels. Instead, we construct a function space, that depends on the kernel
and then choose the classifier function from that space that minimizes the expected loss.
In contrast to arbitrary functions kernels allows us to use linear optimization. From a
different perspective, the kernel function measures similarity between the two inputs, in
our case the formulas. It gives us the opportunity to use classifier functions that are
not linear in the features, i.e. to capture non-linear dependencies, while still giving the
opportunity to use linear optimization to compute the factors.

[KvLT+12]

Definition 6 (Kernel). A function k : Γ × Γ → R is a kernel, if there is a function
φ : Γ→ F which is sometimes called basis function from Γ to an inner product space F ,
e.g. Rn, s.t.

k(x, y) = 〈φ(x), φ(y)〉.
An example of a nonlinear kernel (which will be used) is the Gaussian kernel with

parameter σ, where 〈·, ·〉 is the standard scalar product in Rn.

kgauss(x, y) := exp

(
−〈φ

x, φx〉 − 2〈φx, φx〉+ 〈φy, φy〉
σ2

)
9



We consider a space of functions which are candidates for our classifier function:

Definition 7 (Kernel Function Space). Given a kernel k, we define

Fk :=

{
f ∈ RΓ | f(x) =

∑
v∈Γ

αvk(x, v)αv ∈ R, ||f || <∞

}

where ||f || =
∑

u,v∈Γ αuαvk(u, v).

From these functions we choose the one which has the lowest expected loss w.r.t
the square loss for the proofs of which we already know the dependencies. We prevent
overfitting by additionally penalize functions with high metric, which corresponds to
complicated functions, that are too adjust to the training set and do not generalize to
unseen goals. It is important to see that we get a different expected loss for different
premises. For each formula p we compute its classifier w.r.t its specific data as follows.

Relevancep = arg min
f∈Fk

E(f) + λ||f ||2

This is a minimization problem and we do not go into detail. A solution to this
particular minimization problem can be found in [AKT+11].

There is one important drawback in using the above algorithms as only indicator of
usefulness: In MaSh, for example, the facts and proofs typed after the last Sledgehammer
run might not even considered on the next Sledgehammer run due to an implementation
choice. And furthermore they appear in very few proofs only but may be very important
due to the fact that they were written in the same theory as the proof goal. For this
reason, the MaSh selector is in practice combined with a proximity selector that ranks
the facts by decreasing order in the proof text and contributes with factor 0.2 to the
result [BGK+16, 10].

Another issue that occurs in practice is the problem of non-monotonic theory changes,
i.e. renaming, deletion, reordering and modifying of formulas and theories. This obviously
means changes in dependencies and naming. Due to implementation choices, this is not
always corrected, but we will not go into detail about these issues. [BGK+16, 12]

2.3 Performance in Comparison

In this section we evaluate how the Premise Selection algorithms using machine learning
perform in comparison to ones not using machine learning. For this, we shortly introduce
suitable metrics to compare them in a way, in which we actually understand, what goes
on on the selection level.

2.3.1 Metrics

The following metric expresses, how good the premises in a known proof can be rediscovered
by the Fact Selectors.

Definition 8 (Full recall). Let {p1, ..., pn} be the highest ranked facts by a Premise
Selector and c the goal.

10



The full recall is the smallest natural number k for which usedPremises(c) ⊂ {p1, ..., pk}
and set to n+ 1 if the highest ranked facts do not include the needed premises. It indicates
how many facts the selection algorithm would have needed. Smaller numbers indicate
better selection [BGK+16].

2.3.2 MaSh/MeSh vs MePo in Sledgehammer

MePo, another Premise Selector for Isabelle uses the following heuristic for Fact Selection.
It is further refined, for example by weighing the features by their rarity as we do in the
other algorithms as well. It iteratively applies the following steps until it has selected the
desired number of facts: We start the iteration with initializing the set of known symbols
to the set of symbols in the proof goal.

1. For each fact, compute as its score k/(k+u) where k is the number of known symbols
occurring in the fact and u the number of unknown symbols.

2. Select the facts with the highest score and add the features of the selected facts to
the set of known symbols.

MaSh is the name for both the implementation of the k-NN and Naive Bayes algorithms
in Sledgehammer [BGK+16]. MeSh is the algorithm that combines the result of MaSh
with the ones from the selector SInE (Sumo Inference Engine) [HV11] which is similar to
MePo, by taking both results into account where both are weighted 0.5. MeSh performs
even better overall than MaSh. As stated before, MaSh is in practice combined with a
proximity selector, that takes into account, that new lemmas and theorems, defined in the
same theory as the goal might not have enough impact on the knowledge base but are
likely to play a role in the proof of the goal.

In the table we consider formalizations of different matter with each having around
750-1500 goals with about 6 dependencies per goal each, from 31 to 42 average features
per fact and total numbers of 13-65000 total facts. Figure 1 [BGK+16] shows the full
recall for these formalization. The lowest average full recall is highlighted. We see that
MaSh and MeSh have a lower full recall by factors between two and six.

MaSh MeSh
Formalization MePo NB kNN NB kNN
Auth 647 104 143 96 112
IsaFoR 1332 513 604 517 570
Jinja 839 244 306 229 256
List 1083 234 263 259 271
Nominal2 1045 220 276 229 264
Probability 1324 424 422 393 395

Figure 1: Average full recall

Figure 2 [BGK+16] shows the success rate of the ATPs. In particular from the range
between 100 and 300 given facts we see that the machine learning based algorithms
outperform MePo. Another observation is, that the success rate decreases when the ATPs
are given more than 300 facts. This really confirms, that a good Premise Selection is
important, since the provers do not find as many proofs, when given many facts.

11



Figure 2: Success rates within 10s of a combination of four provers on the goals of the
above formalizations

3 Summary and Outlook

We saw, that MaSh and MeSh clearly outperformed MePo in terms of the chosen metric
and the considered formalizations. The metrics capture our guess about what should be
useful and what we wanted the Premise Selectors to do. In a different comparison on
different goals in [BGK+16], Sledgehammer with MaSh and MeSh still finds more proofs
than with MePo, but the difference is smaller. MaSh is even outperformed by MePo using
the E-prover and Vampire. A hypothesis is that MaSh tends to select facts, that ”mislead”
the ATPs heuristics to find the proof. Another reason could be that goals tend to rely on
local facts for which we do not have enough data [BGK+16, 20].

As features, we used only symbols and terms occurring in formulas. [AKT+11] suggests
to look for different ideas. In [ACI+16] instead of the above discussed learning methods,
deep learning is used for Premise Selection.

Interesting related subjects include the applications of Machine Learning to Theory
Exploration and Heuristic/Strategy selection for ATPs. Theory Exploration is the problem
of automatically finding lemmas and propositions that can be rather straight-forward
deduced, which in turn can be used to generate missing lemmas needed for a proof. This is
suggested in [JRSC14]. Heuristic/Strategy Selection happens in the part, where the actual
reasoning is carried out in ATPs and is mostly about picking the next clauses to use in the
step of the saturation/resolution in a clever way to actually find the proof. [MP09] [BHP14]
We saw, that a good feature extraction combined with machine learning can lead to
significantly better results for Premise Selection in terms of the metrics. Even though this
does not necessarily need to improve the performance of ATPs for particular cases, there
is a lot of potential and progress has been made after the used papers came out.

12



References

[ACI+16] Alexander A. Alemi, François Chollet, Geoffrey Irving, Christian Szegedy, and
Josef Urban. Deepmath - deep sequence models for premise selection. CoRR,
abs/1606.04442, 2016.

[AKT+11] Jesse Alama, Daniel Kühlwein, Evgeni Tsivtsivadze, Josef Urban, and Tom
Heskes. Premise selection for mathematics by corpus analysis and kernel
methods. CoRR, abs/1108.3446, 2011.

[AMU11] Jesse Alama, Lionel Mamane, and Josef Urban. Dependencies in formal
mathematics. CoRR, abs/1109.3687, 2011.

[BGK+16] Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel
Kühlwein, and Josef Urban. A learning-based fact selector for isabelle/hol. J.
Autom. Reason., 57(3):219–244, October 2016.

[BHP14] James P. Bridge, Sean B. Holden, and Lawrence C. Paulson. Machine learning
for first-order theorem proving. Journal of Automated Reasoning, 53(2):141–
172, Aug 2014.

[CYC] Cyc: Logical reasoning with the world’s largest knowledge base. http://www.
cyc.com/. Accessed: 2018-05-13.

[HV11] Kryštof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning.
In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Automated
Deduction – CADE-23, pages 299–314, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[JRSC14] Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster:
Integrating theory exploration in a proof assistant. In Stephen M. Watt,
James H. Davenport, Alan P. Sexton, Petr Sojka, and Josef Urban, editors,
Intelligent Computer Mathematics, pages 108–122, Cham, 2014. Springer
International Publishing.

[KBKU13] Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef
Urban. Mash: Machine learning for sledgehammer. In Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem
Proving, pages 35–50, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[KvLT+12] Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban,
and Tom Heskes. Overview and evaluation of premise selection techniques
for large theory mathematics. In Bernhard Gramlich, Dale Miller, and Uli
Sattler, editors, Automated Reasoning, pages 378–392, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[MML] Mizar mathematical library. http://mizar.org/library/. Accessed: 2018-
05-13.

13

http://www.cyc.com/
http://www.cyc.com/
http://mizar.org/library/


[MP09] Jia Meng and Lawrence C. Paulson. Lightweight relevance filtering for machine-
generated resolution problems. Journal of Applied Logic, 7(1):41 – 57, 2009.
Special Issue: Empirically Successful Computerized Reasoning.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. J. Comput. Secur., 6(1-2):85–128, January 1998.

[Sch13] Stephan Schulz. System description: E 1.8. In Ken McMillan, Aart Middeldorp,
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 735–743, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[SUM] Suggested upper merged ontology (sumo). http://www.adampease.org/OP/.
Accessed: 2018-05-13.

[UHV10] Josef Urban, Krystof Hoder, and Andrei Voronkov. Evaluation of automated
theorem proving on the mizar mathematical library. In Komei Fukuda, Joris
van der Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathematical
Software – ICMS 2010, pages 155–166, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[USPV08] Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jǐŕı Vyskočil. Malarea sg1 -
machine learner for automated reasoning with semantic guidance. In Aless-
andro Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated
Reasoning, pages 441–456, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

14

http://www.adampease.org/OP/

	Introduction
	Machine Learning for Premise Selection
	Data preprocessing
	Dependencies in the knowledge base
	Feature extraction

	Machine Learning Algorithms for Premise Selection
	k-Nearest Neighbors
	Naive Bayes
	Kernel-based Learning

	Performance in Comparison
	Metrics
	MaSh/MeSh vs MePo in Sledgehammer


	Summary and Outlook

