Conflict Driven Clause Learning

Alexander T. Schlenga
June 8, 2020

Abstract
I present the CDCL algorithm and its implementation based on exist-
ing literature. This algorithm is used to solve SAT problems efficiently.
First, the basics of SAT solving are introduced, then the CDCL algo-
rithm’s functionality is explained and a modern implementation is pre-
sented.

1 The boolean satisfiability problem

In order to reason about the satisfiability problem we first introduce some no-
tions and notations. We use the boolean notation to denote the values of vari-
ables, i.e. x; = 0 if z; is assigned 0 or false and x; = 1 if x; is assigned 1 or true.
We extend this notation to propositional formulae. An assignment now assigns
to each variable occurring in a formula, and therefore also to the formula itself,
a boolean value 0 or 1. The boolean satisfiability problem, often called SAT, is
the following: given a formula F' on propositional variables, does there exist an
assignment A on these variables, such that A(F) = 1.

It is an NP-complete problem. In recent times, for many other problems in
NP, the approach was to reduce them to SAT. This is because nowadays there
exist efficient SAT solvers for formulae of even millions of variables (Biere et
al., 2009, p. 131)(Knuth, 2015, p. 62). Most of these modern SAT solvers are
based on an algorithm called Conflict Driven Clause Learning (CDCL) which is
presented here.

Before applying CDCL (or similar algorithms) to a boolean formula, it has
to be transformed into Conjunctive Normal Form (CNF). A formula F is in
CNF if and only if it is a conjunction of disjunctions of literals, i.e. of the form

F=A\1i,
]

where [; ; are the literals. A literal is either a propositional variable or its
negation. Usually, CNF formulae are represented in an alternative form called
clauses using the commutativity, associativity and idempotence of the logical
operators V and A. A clause corresponds to a disjunction of literals and a CNF
formula is a conjunction of clauses. We write a clause as a set of its literals and
a formula as a set of clauses. For example:

A propositional formula: “(((wo A 1) V x2) > 1)

An equivalent formula in CNF: (o V1 Vx2) A (m21 V —2a)

In clause representation: {{zo, 1,22}, {21, 22} }

In reality, formulae are often not being transformed into equivalent CNF for-
mulae but into equisatisfiable CNF formulae (formulae which are satisfiable if
and only if the original formula is satisfiable) when preparing them for SAT,
because this can be done efficiently.

2 Basics of SAT solving

The CDCL algorithm is a mix of two older approaches to SAT solving: DPLL
and Resolution. It uses concepts from both and combines them in a new way.
So let us have a look at them first.

2.1 Backtracking and unit propagation as in DPLL solvers

When we provide a SAT instance to a DPLL solver, it builds up a search tree
of assignments until it either finds a satisfying assignment or reports unsatisfi-
ability because it has gone through the whole search tree.

This is done by iteratively choosing a variable x; and, depending on some
heuristic, setting its value to true or false and appending it to the track. If
then, at some point, at least one clause has all of its literals evaluated to false,
therefore making the whole formula false, the backtracking procedure begins.
It goes backwards through the tree until it finds a variable whose value has not
yet been set to both true and false and changes its value. All variables coming
after it in the tree are unset again.

Example graph for G = {{—xo, 7x1, "xa}, {20, z2}, {zo, x1, 22} }:

The backtracking algorithm has just discovered that setting xo = 0 makes the
clause {—zg,x2} false. So it goes back to explore the 1 = 0 path and deletes
the value of xs.

Unit propagation There is an important improvement to that procedure
that we ignored until now. If we have a closer look at formula G again, we
see that after setting zo = 1, the clause {—zg,22} can only become true if
we set 9 = 1. And then, the clause {—zg, 7x1, ~z2} again, can only become
true if we set x1 = 0. We see that actually there was no need to branch on
those variables, because their values (given z¢o = 1) can be deduced. We call
this unit propagation and the clause forcing the decision a unit clause (Biere
et al., 2009, p. 133). It is a very important technique in SAT solving because

unit clauses occur very often when assigning variable values iteratively (Knuth,
2015, p. 31)(Biere et al., 2009, p. 138).

2.2 Resolution

If a formula F contains the clauses {—2}UA’ and {x}UA"” (with A’ and A” being
disjunctions of other literals), we can derive the new clause A = {4’} U {A"}
and append it to F' without changing its semantics (Knuth, 2015, p. 54). This
works because if a satisfying assignment A makes x false then a literal of A”
must consequently be set to true, thus also evaluating A to true. If A makes
T true, it is the other way around. This procedure is called Resolution and is
a proof calculus for propositional formulae. Note that there may be multiple
ways in which two clauses can be resolved but throughout this paper it should
be clear upon which variables we resolve.

3 Principles of CDCL

Now that we have seen how Backtracking and Resolution work, we are ready to
merge these approaches.
From now on let n be the number of variables of the formula.

3.1 The trail

When applying CDCL, rather than exploring a search tree of assignments like in
DPLL, we build up a trail of literals which have been made true, respectively,
by setting their variables’ value appropriately, and which do not falsify any
clauses yet. We use an enumerator ¢ starting from 0, to count up the entries
in the trail, which are the literals L;. When we reached ¢t = n (the number of
assigned variables equals the total number of variables), we found a satisfying
assignment. In parallel, we count up a level d, also starting from 0, which will
be explained below. (Knuth, 2015, p. 62)

Here too, we use unit propagation. Whenever we observe that a clause ¢
has all of its literals except one evaluated to false and the remaining literal [
has not been assigned a value yet, we can say that [= 1 must hold and the
variable corresponding to | must receive the appropriate value: z; = 1, if [is of
the form [= x; and z; = 0, if it is of the form | = —x;. (Davis & Putnam, 1960,
pp- 209-211)

This is realized by incrementing ¢, setting L; = [, updating the value of I’s
variable and introducing c as the so-called reason of I. This reason enables us
to better handle conflicts later. The level d of this new trail entry is the same
as of the previous one. (Knuth, 2015, p. 62)

But, as soon as there are no more unit clauses present, we must branch on
a new literal [which we pick following a heuristic approach. In this case, we
increment ¢ and the level d, we set L; = [, update the value of [’s variable and
put A as L;’s reason, which means that it was a decision rather than forced.
(Marques-Silva & Sakallah, 1996, p. 221)(Knuth, 2015, p. 62)

Consider, as an example, the clauses

{{',1:173337 ‘r4}7 {"(E27 "xf)}u {fL'3, X4, Ts, "x6}7 {"xl}u {xla X2, “./L'4,.T6}}

A possible trail would look like this (table design inspired by Knuth (2015,
pp. 63-65)):

t Ly level reason

0 | 0 {‘!l‘l}

1 xTo 1 A

2 X5 1 {—\.132, _|33‘5}

3 T3 2 A

4 x4 2 {21, 23,24}

5 g 2 {x1, @, x4, 6}

Forcing 21 = 0 because of the presence of the original unit clause {—z;} was the
first thing to do. Then, a decision had to be made. In this case we decided to
set zo = 1 and established a new level. After that, we had a unit clause again,
and so it goes on.

Note hereby that this example is for illustration purpose only. A real-world
CDCL solver would make better decisions.

Up until now, the process did not differ essentially from normal DPLL.

3.2 Conflict clauses and backjumping

Consider our previous example again. When we want to continue building up
our trail, looking at the clause {3, x4, x5, ¢}, we can conclude —xg must be
true. But now we have a problem, since we already decided for the opposite.

t Ly level reason

0 -1 0 {1}

1 Zo 1 A

2 X5 1 {—\.232, _\1‘5}

3 T3 2 A

4 x4 2 {x1, 23,14}

5 xg 2 {z1, 22, x4, x6}
6 e 2 {$3, X4,T5, ﬁl‘@}

We call this situation a conflict (Marques-Silva & Sakallah, 1996, p. 221). It
brings us to the crucial point of the CDCL algorithm: conflict resolution, learn-
ing and backjumping (Biere et al., 2009, p. 137). We introduce new notions:
we say a literal [directly depends on another literal I’ if and only if the reason
for I contains I’ (Knuth, 2015, p. 63). Also, we say that a literal I depends on
some other literal I’ if and only if either [directly depends on I’ or, transitively,
a literal in the reason of | depends on I’ (Knuth, 2015, p. 63).

In our example we call ¢ = {z3, ~x4, x5, 726} the conflict clause. It cannot
be satisfied because it would need —xg to become true, but x¢ was forced by unit
propagation. We take now the reason of x¢ and resolve it with ¢ to obtain ¢/ =
{x1, 22,3, x4, x5}. Unfortunately, this is not enough; we cannot integrate ¢’
in our current level since we still have x4, on which xg depended, forced with the
reason {x1,r3,24}. The solution is to restart the whole procedure by setting ¢’
as our new ¢ (Knuth, 2015, p. 63) and resolving it with the reason of x4 to get
d ={x1, 29,23, 75}

Now, there is only one dependency of —xg left on our current level: —zj.
This is the point where we can stop resolving. We look for the last level on
which another dependency appeared, which is —x5 on level 1, and discard all
levels after it. We append x3 with the reason ¢’ to the trail (because of unit
propagation) and proceed. This we call backjumping and ¢’ is our newly learned
clause. (Knuth, 2015, p. 63)

t Ly level reason

0 I 0 {_LTl}

1 X2 1 A

2 X5 1 {ﬁl‘g, ﬁl‘5}

3 I3 1 {1‘1,_\%‘2,1‘3,1‘5}

More generally speaking, the conflict resolution procedure goes as follows: If we
observe that a clause ¢ has all of its literals falsified by the current assignment,
then ¢ is a conflict clause. We do the following until ¢ contains at most one
literal occurring in the current trail level: Pick a literal from the current trail
level whose negation is in ¢ and resolve ¢ with its reason. Then call the resolvent
the new c. (Knuth, 2015, p. 63)

After that, we backjump in the trail (variables become unassigned again) up
to the highest decision level where c¢ is a unit clause and then unit propagation
is applied. (Knuth, 2015, p. 63)

3.3 The implication graph

A nice way to illustrate the functionality of CDCL are implication graphs. We
create a node for each assigned variable and let edges correspond to direct de-
pendencies. This way we create a directed acyclic graph. Nodes without prede-
cessors represent decision assignments and K is a conflict node (just illustrating
the fact that there is a conflict). (Marques-Silva & Sakallah, 1996, p. 222)

So the implication graph for our example would be:

-

L))

EF—() C—)

before conflict with conflict

Upon a conflict, we identify all the nodes from which the conflict originated, i.e.
dependencies of zg or —xg, which are in our case all nodes, and remove from

these the nodes that were created after our most recent decision. We obtain
(mx1 Az A—x3 A—xs). We know that by setting all these literals to true, we get
a conflict. So at least one of them must be a false assignment. The new clause
we learn is the negation of (—z1 A z3 A -x3 A —x5), which is {1, @2, 3, 25}
We can now take this as the reason to purge our last decision and all after it
and set 3 = 1. (Marques-Silva & Sakallah, 1996, pp. 222-223)

@ I3

conflict analysis learning

Note that the analysis procedure based on implication graphs yields the same
result as the formal way with resolution and is not meant to be implemented
but merely gives an intuition of what is the idea behind conflict analysis and
resolution.

3.4 The algorithm

To get a clearer view, Algorithm 4.1 shows the pseudocode for the CDCL algo-
rithm without any further enhancements (taken from Biere et al. (2009, p. 136)
and modified). ¢ corresponds to the formula in CNF and v is the assignment
of the variables. The tuple (z,v) returned by PickBranchingVariable(¢, v) is a
variable = together with a value v € {0,1}. In ConflictAnalysis we analyze the
most recent conflict and thereby learn a new clause. The Backjump procedure
jumps back to the level g computed by Conflict Analysis.

4 Implementation

Let us now look at how the algorithm is implemented in real life by the example
of the implementation of Knuth (2015, pp. 66—68).

4.1 Clauses

We use a monolithic array MEM to hold the original formula’s clauses as well as
the newly learned clauses. In this array, a clause ¢ = {lo,l1, - lg—1} with k > 1
is represented by its position ¢ in MEM as follows: Each literal {; of c is stored
in MEM[c + j]. The length of c is stored in MEM[c - 1]. Unit clauses are not
stored in MEM but are treated differently since they appear at level 0 of the trail.

Algorithm 1 Conflict driven clause learning
function CDCL(¢, v)
if (UnitPropagation(¢, v) == CONFLICT) then
return UNSAT

end if
d<+ 0 > Decision level
while (not AllVariablesAssigned(¢, v)) do
(z,v) = PickBranchingVariable(¢, v/) > Decide stage
d<—d+1 > Increment decision level due to new decision

v vU{(z,v)}
if (UnitPropagation(¢, v) == CONFLICT) then > Deduce stage
B = ConflictAnalysis(¢, v) > Diagnose stage
if (3 <0) then
return UNSAT
else
Backjump(¢, v, 8)
d+ p > Decrement decision level due to backjumping
end if
end if
end while
return SAT > Return satisfiability
end function

MEM[c - 5] to MEM[c - 2] contain additional information about a clause (see
below). (Knuth, 2015, p. 66)

Two additional values are remembered: MINL and MAXL. Since the learned
clauses appear after the initial ones in MEM, we are able to distinguish between
them. MINL stands for the lowest index in which learned clauses are stored and
MAXL - 1 is the highest index in MEM which is occupied by a learned clause (and
also by any clause). (Knuth, 2015, p. 66)

4.2 Literals

Assume the variables are z1,xs, - , x,. We represent xj by k. The correspond-
ing literals x; and —xj are respesented by 2 -k and 2 - k + 1, respectively. In
total we have 2 - n literals. (Knuth, 2015, p. 66)

One important concept for efficient CDCL implementation is literal watching
realized by lazy data structures. Instead of knowing every literals assigned value
all the time, we just care whether in every clause there are at least two literals
which are not false. If there is only one literal left which is not false and its
corresponding variable has not been assigned yet, we apply unit propagation. If
all literals in a clause are false, we have a conflict. (Biere, 2008, pp. 78-80)

In order to implement literal watching we keep a watch list W; for every
literal . It is a linked list and can either be 0 which means [is not watched in
any clause or point to a clause. The watched literals in a clause are always in
the first and second position. If one of those becomes false, we search in clause
for a new literal to watch and swap it with the former watchee. If ¢ is the first
clause in which [is watched, W; can be either MEM[c - 2], if [= [y in ¢, or
MEM[c - 3],ifl =1;. (Biere, 2008, pp. 78-80)

4.3 Variable attributes

As described by Knuth (2015, pp. 66-67), for each variable xj, (represented by
k) of our formula we keep track of six attributes:

VAL (k) is the value of a variable. We set VAL(k) < —1 as long as variable zy,
is unassigned. But when it receives a value we assign to VAL(k) 2-d if zy,
has been made true and 2 - d + 1 if -z has been made true. Remember
here that d is our current (decision) level.

OVAL(k) Whenever a variable x; becomes unassigned again due to a backjump-
ing process, we set OVAL (k) < VAL (k) to remember its old value which is
often a good guess if we happen to branch on xj in the future.

TLOC(k) is the trail location ¢ of when x; was assigned.

ACT (k) is an activity score which tells us how much zy, is qualified for becoming
our next decision variable. When looking for a variable to branch on, we
try to keep focus on variables that were involved in recent conflicts. Thus
we increase a ACT (k) whenever xj is involved in a conflict, for details see
below.

HLOC(k) All unassigned variables (and possibly others) are stored in a HEAP
which always provides the variable with the highest ACT (k). We must up-
date this HEAP whenever we resolve a conflict. It shall hold that ACT (HEAP[j])
< ACT(HEAP[(j - 1) >> 11), for 0 < j < h, where >> is the bitshift op-
erator (which we will later use to reduce a literal to its variable) and h
the number of elements of the HEAP. HLOC (k) is the current location of zj,
in the HEAP.

S(k) is a stamp that is used for a more efficient version of conflict resolution
and will be explained later.

Let us have a look at the details of our activity scores. Everytime we analyse
a conflict, we identify each variable xj involved in it and add to its ACT (k) a
summand p~? when we have the ith conflict. Here 0 < p < 1, e.g. p = 0.95.
This way, every new conflict increases the activity scores a bit more and older
conflicts become more and more irrelevant. At some point the activity scores
will become too huge for our program to handle. To cope with this, we divide
all of them by a value of e.g. 10'%° as soon as any ACT (k) exceeds this value.
A variable called DEL is used to store the current scaling factor p~ that we
obtained after having resolved M conflicts. (Knuth, 2015, p. 67)

4.4 Flushing clauses

Many of the clauses that a CDCL run learns are very long and/or almost never
used. They slow down our algorithm in several ways. (Knuth, 2015, p. 71)

To get rid of those clauses we purge them out of MEM whenever the number
M of learned clauses exceeds some threshold M, which could be e.g. 10000.
Of course, we cannot purge clauses which are currently used as reasons in our
trail, but all others we can purge and we will try to do this for at least half of
them. (Knuth, 2015, p. 72)

A good metric to do so is the literal block distance. It is defined, for a clause
¢, as the number of different levels of the trail in which literals of ¢ appear.
We purge those clauses with the smallest literal block distance. (Audemard &
Simon, 2009, pp. 401-402)

4.5 Flushing literals

Apart from flushing clauses from time to time, we want to do this also with
literals which might have become out of date in the sense that they are assign-
ments that no longer suit our current direction of exploring the search space.
(Knuth, 2015, p. 75)

In order to do so, we keep an eye on the activity scores of the literals and
when it seems that there are enough literals which are no longer involved in
recent conflicts, we flush our trail up to the point to which there are no more
such literals in it. (van der Tak et al., 2011, pp. 134-136)

Then, we will see most of the other literals again soon because they had high
activity scores and will therefore probably be branched on, receiving their OVAL
(see below).

4.6 Efficient conflict resolution

We will see now how we can form the new clause we are learning during a
conflict in a faster way than simple iterative resolution. If we have a conflict
on the variable of [and our conflict clause is {-l, —ay,--- ,—ax}, we apply the
following procedure: Set up an array which will in the end contain the literals
of our newly learned clause. Stamp every literal a; with a unique number which
is then the S attribute. Insert every —a;, whose complement a; was set before
the current level but after level 0, into the array. Then, stamp [and set up a
counter for the number of stamped literals of level d (the current decision level).
Look for a literal L; in the trail with our currently used stamp S. Say, it has
the reason {L;,—a},--- ,-a}}. If our counter is bigger than 1, stamp each a
and put it into the array if it has not been stamped before with the current
stamp. Then decrease the counter and start over, looking for a new L;. When
the counter becomes 1, put —L; into the array and return the disjunction of the
literals in it as the new clause. (Knuth, 2015, p. 64)

This technique reduces the redundancy of the resolution procedure regarding
both storing intermediate results and computing the actual resolvents.

4.7 Bringing it all together

The following description of the CDCL algorithm is taken from Knuth (2015,
p. 68), who based it on MiniSAT by Eén & Sérensson (2003) and updated it
according to newer techniques.

Step 1 [Initialize] First we set n to the number of variables occurring in our
formula. Then we do the following for every variable k (remember, we
represent xx by k): Set VAL (k), OVAL (k) and TLOC (k) to —1 (unassigned).
Set ACT (k) and S(k) to 0. Set Ror and Rax41 to A. Here, R; denotes the
reason of [. Create a random permutation p; ...p, of {1,...,n} and set
HLOC (k) to px — 1 and HEAP (py, — 1) to k. After that, initialize MEM, MINL,

MAXL and the watch lists. Set g, d, s, M and G to 0 (G always points to the
last literal for which we already did watch list updating and therefore also
possibly unit propagations). Then start filling the trail with the literals
from the unit clauses. The last of them is Lr_q. This way we implicitly
set F. Finally, set A to n and DEL to 1.

Step 2 [Level complete?] Jump to Step 5 if G == F. Otherwise proceed as
normal with Step 3.

Step 3 [Advance G| Let [be L and then increment G. Execute Step 4 for all
clauses ¢ in which =l is watched. If no conflict occurred, go back to Step
2.

Step 4 [Does ¢ force a unit?] Assume ¢ = {lp,l1, - ,lx—1} and that the
watched —l is [;. If it is [y instead, swap lp and [{. If Iy is in the trail,
everything is fine. If not, swap [; with a non-false literal of ¢ not currently
watched and make it a new watchee. Update the respective watch lists.
If there is no such literal, look at ly. If [y is unassigned, we have a unit
propagation: Set Lg to Iy, TLOC(lyg >> 1) to F, set the VAL of ly’s vari-
able appropriately. Set R;, to ¢ and increment F'. If [y is false, we have a
conflict, jump to Step 7.

Step 5 [New level?] If FF == n, return SAT and the assignment of the variables.
If not, check for the necessity of flushing literals or clauses. If literals were
flushed, go back to Step 2. If not, increment d and set ig to F.

Step 6 [Make a decision] Pop the variable k with the highest activity score
from the HEAP. If it was already assigned (by unit propagation), repeat
this step. Otherwise, check whether an OVAL has been set for k. If so,
assign the same truth value to k again and set VAL (k) to OVAL (k). If not,
make it true. Then let | be the chosen literal (represented by 2k(+41)) and
set Lp to [, TLOC(U >> 1) to F, R; to A and increment F'. Here we have
F = G+ 1. Then go back to Step 3.

Step 7 [Resolve a conflict] Return UNSAT if d == 0. If not, resolve the conflict
with the efficient method described above with ¢ being the conflict clause.
Increase ACT(I >> 1) by DEL for every literal [stamped by the procedure.
Update the HEAP correspondingly. Then set d’ to the backjumping level.

This step corresponds to ConflictAnalysis in Algorithm 4.1.
Step 8 [Backjump] While F' > i4 41 do clean up: decrement F, set [to Lp, k

tol >> 1, OVAL(k) to VAL(k), VAL(k) to —1, R; to A and, if k is currently
not in the HEAP, put it back in. Finally, set G to F and d to d'.

This step corresponds to Backjump in Algorithm 4.1.
Step 9 [Learn] If d > 0, set ¢ to MAXL, add ¢ to MEM and set the new MAXL. Set
L to !’ (the literal forced by the newly learned clause), TLOC(I’ >> 1) to

F, Ry to ¢, DEL to DEL/p and increment M and F. Then go back to Step
3.

10

5 Results

It is important to say that CDCL is a sound and complete algorithm for the
propositional satisfiability problem (Marques-Silva, 1995, pp. 227-228).
To certify the result of CDCL solver’s run we have to look at two cases:

1. We return SAT. In this case our algorithm also returns a satisfying as-
signment for the formula and we can easily check whether it is really a
satisfying assignment.

2. We return UNSAT. This is a bit more difficult, but also here our CDCL
algorithm comes in handy as the sequence of learned clauses is a certificate
of unsatisfiability. Every set of learned clauses implies by unit propagation
that the negation of the next learned clause would lead to a contradiction
and therefore the next clause must also hold. At the end we have the
empty clause.

References

Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern
SAT solvers. Proceedings of the Twenty-First International Joint Conference
on Artificial Intelligence, 399-404.

Biere, A. (2008). PicoSAT essentials. Journal on Satisfiability, Boolean Modeling
and Computation, 4(2-4), 75-97. doi: 10.3233/SAT190039

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of
satisfiability (Vol. 185 of Frontiers in Artificial Intelligence and Applications).
IOS Press. doi: 10.3233/978-1-58603-929-5-131

Davis, M., & Putnam, H. (1960, 07). A computing procedure for quantification
theory. Journal of the ACM, 7, 201-215. doi: 10.1145/321033.321034

Eén, N., & Sorensson, N. (2003). An extensible SAT-solver. Lecture Notes in
Computer Science, 2919, 502-518.

Knuth, D. E. (2015). The art of computer programming: Satisfiability, volume
4, fascicle 6. Addison-Wesley Professional.

Marques-Silva, J. P. (1995). Search algorithms for satisfiability problems in
combinational switching circuits (phdthesis). University of Michigan.

Marques-Silva, J. P., & Sakallah, K. A. (1996, November). GRASP—a new
search algorithm for satisfiability. ICCAD ’96: Proceedings of the 1996
IEEE/ACM international conference on Computer-aided design, 220-227.

van der Tak, P., Ramos, A., & Heule, M. (2011). Reusing the assignment trail
in cdcl solvers. Journal on Satisfiability, Boolean Modeling and Computation,
7(4), 133-138. doi: 10.3233/SAT190082

11

