
Higher Order Unification
Fabian Huch

Technische Universität München

June 2020

Abstract
Unification is an important problem in many areas of automated

reasoning, mainly automated theorem proving. However, the problem
is not decidable in higher-order logics. Still, practical algorithms exist
that work in many cases. In this paper, we explain the semi-decision
unification algorithm by Huet. We put special emphasis on the intuitive
understanding how the algorithm works.

1 Introduction
Unification is the process of finding an assignment to free variables in terms t and
t′, such that they are equal under the assignment. While this is a computable
problem for formulas of first-order logic, in higher-order logics, it is known
to be undecidable [2]. Nevertheless, it is a important problem in the field of
automated reasoning, as unification can be used, for instance, to search for
proofs in automated theorem provers. These systems in particular typically use
higher order logics, since they require users to state and reason about theorems
formally — this is much easier to do in a calculus that allows quantifying over
any term, rather than being restricted to first order variables.

To solve the problem, Huet presented a semi-decision procedure in [1], which
we will explore in this paper. The original procedure does not assume the axiom
of functional extensionality for η-conversion, to give a more general algorithm.
Though typically, logics set up for automatization (for example, Isabelle/HOL)
admit η-conversion. Hence we assume it as well in the main part of the paper,
since it makes it easier to understand the key ideas.

The paper is structured as follows: In Section 2, we define the λ-calculus that
we use throughout the paper, and explain basic concepts, symbols and notation;
Next, in Section 3, we explain the algorithm in detail and prove its correctness.
Lastly, we discuss the algorithm in a calculus without η-conversion in Section 4.

2 Preliminaries
The logic that we use in this paper is a simply typed lambda calculus, similar
to that of Church [3]: Types τ, τ ′, . . . ∈ T are inductively defined over a set of

1



elementary types T0 (whose elements are denoted by α, β, γ, . . . ) and a single
type constructor →:

τ, τ ′ ∈ T =⇒ τ → τ ′ ∈ T

The type constructor → is right-associative, so any type τ1 → (· · · → (τn →
α) · · · ) can be written as τ1 → · · · → τn → α. The arity of a type, i.e the number
of arguments that need to be applied before an elementary type is returned, is
then n.

Terms (denoted t, u, . . . ) are defined as follows:

t := Cτ (constant)
| xτ (variable of type τ)
| λxτ . t (abstraction by a variable xτ )
| t u (application)

Atoms @ of this definition consist of constants (denoted by uppercase letters),
and variables. Two atoms with same name, but different type, are considered
different entities — though we will name distinct entities differently in this paper.
A variable xτ that occurs somewhere in t is said to be bound in the context of
λxτ . t; if no such abstraction binding exists, it is called free. Should multiple
abstractions for the same variable name be nested in a term, then only the
innermost is a binder for occurrences of the variable. We only consider well-typed
terms, i.e. terms for which the type can be derived from the following rules for
the typing relation t :: τ (assumptions on top of the line, and conclusions below
— notation inspired by [4, Ch. 2]):

@τ :: τ
t :: τ → τ ′ u :: τ

t u :: τ ′
t :: τ

(λxτ ′ . t) :: τ ′ → τ

We further denote T (t) = τ ⇐⇒ t :: τ , and with F(t) the free variables in t.
Abbreviations. For brevity, we will omit type annotations if the type is

not interesting. We abbreviate nested abstractions and applications:

λx1. (λx2. (. . . λxn. t)) by λx1 x2 . . . xn. t

(· · · ((t1 t2) t3) · · · ) tn by t1 (t2, t3, . . . , tn)

Lastly, application binds stronger than abstraction, so λx. t1 t2 means λx. (t1 t2).
λ-conversions. Equality between two terms is taken modulo α-conversion,

i.e. conflict-free renaming of bound variables, and denoted =α.
Terms in the calculus are evaluated using β-reduction: A term of the form

(λx. t) u (called β-redex) can be reduced by replacing all free occurrences of x in
t by u, if no free variable in u would be captured by a binder in t. To fulfill this
side-condition, α-conversion might need to be applied first. We write ⇒β for
β-reduction.

Additionally, η-expansion and reduction, i.e. expanding a term t :: τ ′ → τ
to λxτ ′ . t xτ ′ (and, vice versa, collapsing it) might be admissible, depending on
whether the axiom of functional extensionality is assumed.

Substitution. A substitution σ is a type-preserving mapping from (finitely
many) free variables to terms:

σ := {x1 7→ t1, . . . , xn 7→ tn} xi 6= xj for i 6= j

2



Applying σ to a term t — written σt — can be formally defined as a mapping
from term to term (β-reducing the result):

σt = (λx1 . . . xn. t) (t1, . . . , tn)

Notably, substitutions can not refer to variables bound in an outer scope. For
example, applying {y 7→ x} to the term λx. y produces:

(λy x. y) x =α (λy z. y) x⇒β λz. x

Multiple substitutions can be composed; the evaluation order is right to left,
since the rightmost substitution would be applied first to term.

σρ = {x 7→ t | t = σ(ρx) ∧ t 6= x}

Moreover, substitutions are often compared over a set of variables V :

σ =
V
ρ ⇐⇒ ∀x ∈ V. σx = ρx

Unifier. A unifier for two terms t and t′ (in other words, the disagreement
pair 〈t, t′〉) is a substitution σ such that σt =α σt

′. For a set of disagreement
pairs (a disagreement set), a unifier is a substitution that unifies all pairs point-
wise. We denote the set of unifiers as U(...), input being either a disagreement
pair or a disagreement set.

Finally, [n] denotes {1, . . . , n}.

3 Basic Algorithm
Intuitively, the basic idea of the unification algorithm is to compare the terms
that should be unified in a normal form that has some innermost atom. By
comparing these atoms, a most general (but finite) set of substitutions can be
derived, which reduce the complexity of the unifier for the remaining terms (if
one exists).

The structure of the algorithm can be described as a matching tree that
contains at each node a set of ‘disagreeing’ pairs of formulas (that still need to be
unified), and at each outgoing edge the next substitution to apply. The matching
tree might be infinite, but is finite at each level, and if a unifier exists, then a
success node will be located on a finite level. Hence, to find it, one only needs to
traverse the tree in a suitable fashion (for instance, breadth-first search).

3.1 Normal Form
To effectively compare two terms, we need to have them in βη-normal form. A
term is β-normal if it contains no β-redexes, i.e. there is no (λx. t) u that could
be β-reduced; then, it can be written as

λx1 . . . xn.@ (t1, . . . , tp)

We call @ the head, {x1, . . . , xn} the binder, and λx1 . . . xn.@ the heading of
the term. The terms t1, . . . , tp are its arguments, which must be β-normal again.
A term is called rigid if its head is a bound variable or constant; otherwise it is
called flexible. The intuition is that a rigid heading always stays the same.

3



Lemma 1. A rigid term does not change its heading under any substitution,
modulo α-conversion.

Proof. From the definition of substitution application.

Generally, not all λ-terms have a β-normal form — consider (λx. xx)(λx. xx),
which does not change after a β-reduction. However, such a term can also not
be assigned a type, which leads us to the following the theorem:

Theorem 1. Any well-typed term can be converted to β-normal form by a finite
sequence of β-reductions.

Proof Sketch. Let t be a term that contains β-redexes. Without loss of generality,
we choose a subterm t′ = (λx′τ . t1) u such that u is β-normal. Measuring the
complexity by the type of the redex body λx′τ . t1, we can see that it decreases
by the reduction: The redex that we reduce has type τ ′ → τ , where τ denotes
the type of t1. New redexes might appear where the bound variable that was
reduced is the body of an application, i.e. in subterms x′τ t′′. It follows that
the body type of newly introduced redexes must be τ ′, which is obviously less
complex than τ ′ → τ . Thus the overall complexity – measured by count of
redexes for each type complexity – decreases in each β-substitution. It reaches
zero for a β-normal term.

This sketch only shows that there is at least one terminating sequence of
β-reductions, which is not very practical; in fact, there is a stronger result stating
that any sequence of β-reductions will terminate and yield the same unique
normal form. However, the proof for this is a lot more complex, and can be
found in [5, Ch. 2].

Next, the conversion from β- to βη-normal form is simple. If a term

λx1τ1 . . . xnτn
.@ (t1, . . . , tp)

has type τ1 → · · · → τn → τn+1 → · · · → τm → α (m > n), perform η-expansion
m − n times. This way, a normal-form term is obtained whose type is only
dependent on its binder types and an elementary return type. In this section,
all terms are assumed to be βη-normalized.

3.2 Matching Tree
To unify two terms t and t′, the algorithm constructs a matching tree that stores
the remaining disagreement set as nodes, and substitutions as edges. Fig. 1
shows schematically how the tree is constructed. We give an overview about
the construction in this section; the simplify and match operations are then
explained in much greater detail in the following two sections.

The procedure starts with the singleton set containing the disagreement pair
〈t, t′〉. This set is first simplified, which means that all pairs 〈ti, t′i〉 where both
terms are rigid are broken down. simplify returns a node N1, which is a set
of flexible/flexible and (at least one) flexible/rigid disagreement pairs; if all
remaining pairs would be flexible/flexible, then finding a unifier is trivial, and it
returns a success node Nσ with one unifier instead. Similarly, if a pair turns out
to be non-unifiable, simplify returns a failure node NF .

4



simplify({〈t, t′〉})

match(〈ti, t′i〉)

. . .. . .simplify(σ{〈t1, t′1〉, . . . , 〈tn, t′n〉})

. . .
N2 := . . .

E1 : σ = x 7→ u1 . . . Ek : σ = x 7→ uk

N1 := {〈t1, t′1〉, . . . , 〈tn, t′n〉}

Figure 1: Process of creating the matching tree

Next, an arbitrary flexible/rigid pair from the simplified set is matched, i.e.,
from the structure of the rigid term, all possible substitutions for the head of
the flexible term are derived. Each substitution creates an edge Ei, which points
to the next node, i.e. the simplified result of applying the substitution to all
terms in the previous node. Recursion for a branch ends once simplify returns
a failure node or no more substitutions can be found; the algorithm stops once
a success node is found or once the tree is exhaustively searched. However, if
no unifier exists, the search might not terminate. Fig. 2 shows an exemplary
matching tree (which only stores nodes Ni and edges Ei). The simplify and
match algorithms (as well as the lemmas required for the correctness proof) are
presented in the following sections; finally, we prove correctness of the algorithm.

3.3 Simplifying Disagreement Sets
For the simplification of a disagreement set S, we first eliminate all rigid/rigid
pairs 〈t, t′〉 ∈ S. Suppose those terms in normal form:

t = λx1 . . . xn.@ (t1, . . . , tp)
t′ = λx1 . . . xm.@′ (u1, . . . , uq)

Where @ and @′ are constants or bound variables. Should the headings be
different (under =α), then the terms cannot be unified, so return NF , and we
have:

Lemma 2. simplify(S) = NF =⇒ U(S) = ∅

Proof. No substitution or β-reduction can change the heading by Lemma 1, so
σt 6= σt′ for any σ (〈t, t′〉 ∈ S). 1

If the headings are equal, then n = m and p = q (since types must also be
equal). As a result, the unification only depends on the arguments. Hence 〈t, t′〉
is replaced by {〈λx1 . . . xn. ti, λx1 . . . xn. ui〉 | i ∈ [p]} in the return node Ni.
Essentially, this leads us to the following property:

1And since by construction of the procedure, the corresponding node is returned only in this
case. This argument is the same for all the proofs in this section, and is omitted for brevity.

5



Lemma 3. simplify(S) = Ni =⇒ U(S) = U(Ni)

Proof. σ ∈ U({〈λx1 . . . xn. ti, λx1 . . . xn. ui〉 | i ∈ [p]}) ⇐⇒ σ ∈ U(〈t, t′〉) by
Lemma 1 and since the headings of t and t′ are equal.

It is obvious that the procedure terminates, as the newly introduced terms
have at least one less atom than the eliminated pair. Once all rigid/rigid pairs
are eliminated in the disagreement set S′, all rigid/flexible pairs are swapped
to form S′′ (this does not affect the unifiers, as they unify the set point-wise).
Finally, if at least one flexible/rigid pair exists, the Ni := S′′ is returned as new
node, and we have:

Lemma 4. If simplify(S) = Ni, there must be 〈t, t′〉 ∈ Ni such that t is rigid
and t′ is flexible.

Proof. Construction above.

Otherwise, only flexible/flexible pairs are left. They do not impose too much
structure, so we can directly construct a unifier (and return it in a success
node Nσ): For each y ∈ F(S′′) where y :: (τ1 → · · · → τk → α), suppose
y 7→ λz1 . . . zk. hα ∈ σ, where hα is an fresh free variable (unique for type α):

Lemma 5. simplify(S) = Nσ =⇒ σ ∈ U(S)

Proof. Apply σ to a flexible term with atom y of type τ1 → · · · → τk → α (k = p
due to η-normal form):

σ[λx1 . . . xn. y (t1, . . . , tp)] = λx1 . . . xn. (λz1 . . . zp. hα) (t′1, . . . , t′p)
⇒β λx1 . . . xn. hα

For each substitution pair, both terms have the same type, thus they will be
reduced to the same term.

Examples

{〈y A, v〉, 〈λx.C (x, D), λx. C (x, A)〉} (break down 〈λx.C . . . , λx. C . . .〉)
 {〈y A, v〉, 〈λx. x, λx. x〉, 〈λx.A, λx.D〉} (eliminate 〈λx. x, λx. x〉)
 {〈y A, v〉, 〈λx.A, λx.D〉} (A 6= D in the elimination)
 NF

{〈λx. y (y x), λx. v〉, 〈y v, y D〉} (only flexible/flexible pairs)
 Nσ (σ = {y 7→ λz. hα, v 7→ hα})

3.4 Matching Disagreement Pairs
The match procedure has one flexible term t and one rigid term t′ as arguments
(as well as a set of variables V for fresh variable generation):

t = λx1 . . . xn. y (t1, . . . , tp)
t′ = λx1 . . . xn.@ (u1, . . . , uq)

6



Conveniently, the number of binders must be equal as both terms have the same
type and must be η-normal. The match procedure returns a set of distinct possible
substitutions for y. To that end, the structure of the rigid term is imposed on
the flexible term, while keeping the substitution as general as possible.

If @ is a constant C, then one possibility is to imitate C by y. Alternatively,
C could be the result of a projection on one of its arguments. On the other hand,
if @ is a bound variable, only the projection case is admissible (since a bound
variable can’t be directly imitated).

Imitation To imitate the head C, y is replaced by a term such that C is the
head of t after β-reduction; this is achieved by any term with heading
λz1 . . . zp. C.
The arguments should be free variables so they can be arbitrarily instan-
tiated later on; however, they might also depend on a bound variable.
Applying all bound variables to a fresh free variable hi /∈ V is a solution
that covers both, since any possible term can be derived by subsequent
substitution and η-reduction.
Thus we have as replacement term:

λz1 . . . zp. C (h1 (z1, . . . , zp), . . . , hq (z1, . . . , zp))

The type of variable hi can be derived from T (C) and T (zj) = T (uj).

Projection To project y onto one of its arguments in a most general way, we
first abstract all arguments, then choose one of the binders as head. This
gives us p distinct substitutions. Like in the imitation case, the applied
arguments are most general.

λz1 . . . zp. zi (h1 (z1, . . . , zp), . . . , hm (z1, . . . , zp)) for i ∈ [p]

The number of argumentsm is equal to the arity of zi (with T (zj) = T (uj)).
Moreover, the types of hj depend on T (z1), . . . T (zp). Only the return
type of the replacement matches that of @.

Because the replacements are as general as possible and cover all cases, if
〈t, t′〉 was unifiable, then it must be unifiable under one of the substitutions.
However, to show termination (if a unifier exists), we need a complexity measure.
For terms of form t = λx1 . . . xn.@ (u1, . . . , up), and substitutions σ = {y1 7→
t1, . . . , yk 7→ tk}, we define:

π(t) := p+
p∑
i=1

π(ui)

Θ(σ) := k +
k∑
i=1

π(tk)

Now we can formulate the lemma:

Lemma 6. ∀ρ ∈ U(t, t′).∃σ ∈ match(t, t′, V ), η. ρ =
V
ησ and Θ(ρ) > Θ(η)

7



Proof. Let ρ be an arbitrary unifier for t and t′. Since @ is rigid and can’t change
heading from substitution by Lemma 1, ρ must assign a term to y.

By construction of the procedure, all possible headings for y that can unify
t and t′ were considered, and match must return σ such that heading(σy) =
heading(ρy). The number of arguments of σy and ρy must also be identical, as
the heads are of same type and terms must be η-normal. Hence ρy is a term of
form λz1 . . . zp.@′ (w1, . . . , wm). Define

η := {hj 7→ wj | j ∈ [m]} ∪ (ρ− {y 7→ ρy})

(hi, . . . , hm from the match construction above). Then ρ =
V
ησ holds, and

Θ(η) ≤ (m+
m∑
j=1

π(wj)) + (Θ(ρ)− (1 + π(ρy)) = Θ(ρ)− 1

thus Θ(ρ) > Θ(η).

Example

〈λx1 x2. y (D, λx3. g x3), λx1 x2. C (λx3. x3 x2)〉
 y 7→ λz1 z2. C (h1 (z1, z2), h2 (z1, z2)) (imitation)
 y 7→ λz1 z2. z1 (first projection)
 y 7→ λz1 z2. z2 (h1 (z1, z2)) (second projection)

3.5 Exemplary Matching Tree
Putting it all together, we can now construct a full example for a matching tree.
In Fig. 2, we unify the pair 〈λx. y (C (y x)), λx. C x〉. This example covers most
of the cases for simplify and match.

{〈λx. y (C (y x)), λx. C x〉}

Nσ, σ = {}〈λx. h (C (C (h x)), λx. x〉

NF

h 7→ λz. z

y 7→ λz.C (h z) y 7→ λz. z

Figure 2: Exemplary matching tree

3.6 Proof of Correctness
We now prove the correctness of the algorithm, which means of soundness and
completeness:

Theorem 2. Let N1
σ1−→ · · · σp−→ Nσ be a path in a matching tree. Then

σσp · · ·σ1 ∈ U(N1).

8



Proof. By induction on the path.

Base: If the path only consist of the single node Nσ, then σ is a unifier for it
by Lemma 5.

Induction: Have the induction hypothesis hold for Ni+1
σi+1−→ · · · σp−→ Nσ, i.e.

ξ ∈ U(Ni+1) for ξ := σσp · · ·σi+1. Then for Ni
σi−→ Ni+1, from the con-

struction of the tree, there is a 〈t, t′〉 ∈ Ni such that σi ∈ match(t, t′,F(Ni))
and simplify(σiNi) = Ni+1.
Hence ξ ∈ U(σiNi) by Lemma 3. From this and because the disagreement
pairs in σiNi are of form 〈σitj , σit′j〉, it follows that ξσi ∈ U(Ni).
Thus σσp · · ·σi ∈ U(Ni).

Corollary 1. If there is a success node in the matching tree for t and t′, then
the path to the success node defines a unifier.

Since the matching tree might be infinite, we cannot exhaustively search it.
Thus for completeness we show the following:

Theorem 3. Let N1 be a node of a matching tree. If U(N1) 6= ∅, then the
matching tree for N1 contains a success node at a finite level.

Proof. Let V = F(N1). We inductively construct a path

N1
σ1−→ · · · σi−1−→ Ni

σi−→ N

such that either N is a success node, or an intermediate node Ni+1 such that for
any unifier ρ ∈ U(N1), there exists an ηi+1 ∈ U(Ni+1) such that ρ =

V
ηi+1σi · · ·σ1.

The complexity of this unifier must decrease in each step: Θ(ηi) > Θ(ηi+1).

Base: The path starts at N1, which ρ unifies by assumption.

Induction: Assume we have a path N1
σ1−→ · · · σi−1−→ Ni such that Ni is an

intermediate node that can be unified by ηi.
From Lemma 4, we know that there must be a 〈t, t′〉 ∈ Ni where t is flexible
and t′ rigid (which ηi must also unify). By Lemma 6, ∃σ ∈ match(t, t′, V ), η
such that ηi =

V
ησ.

We take σi+1 := σ, and thus N := simplify(σNi) as next node; ηi, i.e.
ησ, unifies Ni, and hence η ∈ U(σNi). This means that N can’t be a
failure node by Lemma 2; if N is not a success node, then it must be an
intermediate node, and from Lemma 3 we know that η ∈ U(N).
By Lemma 6, also Θ(ηi) > Θ(η) holds, thus for ηi+1 := η, Θ(ηi) > Θ(ηi+1).
Moreover, ρ =

V
ηiσi · · ·σ1 =

V
(ησ)σi · · ·σ1 = ηi+1σi+1 · · ·σ1.

Corollary 2. If ∃σ. σt = σt′, then the matching tree for t and t′ contains a
success node at a finite level.

9



4 Omitting η-conversion
The axiom of functional extensionality might not be desirable in a calculus.
Without it, η-conversion is not admitted. Still, the algorithms works very similar;
the main difference is that more cases need to be accounted for in the match
procedure.

Consider the β-normal disagreement pair 〈t, t′〉 that is the input for match.
The terms then look as follows:

t = λx1 . . . xn. y (t1, . . . , tp)
t′ = λx1 . . . xn xn+1 . . . xm.@ (u1, . . . , uq)

n must be less than or equal to m since any substitution can only affect the
binder of a flexible term, i.e., increase it.

Case n = m Then the procedure is very similar to the original. However, since
y can occur partially applied in a subterm of t, and λx.C x 6= C without
η-reduction, additionally all cases where the binder has less than p variables
have to be considered. Let the following denote a replacement term with p
variables in the binder:

λz1 . . . zp.@′ (h1 (z1, . . . , zp), . . . , hm (z1, . . . , zp))

Then for each k with 0 ≤ k ≤ min(p,m) we add:

y 7→ λz1 . . . zp−k.@′ (h1 (z1, . . . , zp−k), . . . , hq−k (z1, . . . , zp−k))

to the set of possible substitutions, if the term is type-correct with respect
to @.

Case n < m . In this case, m− n additional binders need to be introduced to
unify the headings of t and t′. This is straightforward:

y 7→ λz1 . . . zp xn+1 . . . xm.@′ (H1, . . . , Hm)

where Hj := hj (z1, . . . , zp, xn+1, . . . , xm), for z1, . . . , zp, m, and @′ as
in the original procedure. Moreover, a new case arises for the head xn+k:
This is not a projection case, since all p arguments are already absorbed
by zp. It is rather an imitation, and is thus only applicable if @ = xn+k.
In the previous section, only constants were considered for imitation, since
the whole binder of t was inaccessible from y.

The properties of simplify and match don’t change; in the proofs of the
lemmas, the additional cases need to be accounted for. Other than that, they stay
largely the same. We have noted explicitly where η-conversion or the η-normal
property was used.

References
[1] G. Huet. Unification in typed lambda calculus. In International Symposium

on Lambda-Calculus and Computer Science Theory, pages 192–212. Springer,
1975.

10



[2] G. P. Huet. The undecidability of unification in third order logic. Information
and control, 22(3):257–267, 1973.

[3] A. Church. A formulation of the simple theory of types. The journal of
symbolic logic, 5(2):56–68, 1940.

[4] M. Wenzel, S. Berghofer, F. Haftmann, and L. Paulson. The Isabelle/Isar
Implementation. Technische Universität München, 2019.

[5] R. Loader. Notes on simply typed lambda calculus. University of Edinburgh,
1998.

11


