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1 Introduction

Consider the problem of verifying the correctness of a program. One approach
is, given pre-conditions, to check if the output of the program satisfies certain
post-conditions. A large formula is constructed from the program and its pre-
and post-conditions. Thus, the problem of verifying the program comes down
to checking the satisfiability of the constructed formula.

Satisfiability modulo theories (SMT) solvers are widely used in program ver-
ification. As assigning and comparing values is a common task in programs,
it is convenient to use equalities in the formula. Hence, a SMT solver has to
be able to reason about equality. To reason about equality, any modern-day
SMT solver contains a solver for the theory of equality logic with uninterpreted
functions (EUF) with an implementation of the congruence closure algorithm.

This paper gives an introduction to SMT and EUF. The essential congruence
closure algorithm is explained and an efficient implementation of the algorithm
is given using Directed-Acylic-Graphs (DAGs) and the Union-Find algorithm.

Ackermann (1954) showed that EUF is decidable. Based on this, Shostak
(1978) formulated a decision procedure for formulas in EUF with the congruence
closure algorithm. Soon after efficient implementations using DAGs and the
Union-Find algorithm followed (Nelson and Oppen, 1980; Downey et al., 1980).
Today any modern-day SMT solver contains an efficient implementation of the
congruence closure algorithm as part of a solver for EUF (Moura and Bjørner,
2008).

2 Satisfiability Modulo Theories (SMT)

Satisfiability modulo theories (SMT) is the satisfiability problem for formulas
with respect to some first-order theory, or combinations of first-order theories. A
first-order theory extends Boolean logic with specific predicates, functions, and
quantifiers (non-logical symbols), thus SMT is a generalization of the Boolean
satisfiability problem (SAT). Compared to SAT, SMT allows a richer and more
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convenient representation of formulas, as SMT can reason about equality, linear
arithmetic, bit-vectors, and other first-order theories.

Example 2.1 (First-Order Theories). Examples for first-order theories are:

• Theory of Equality Logic introduces equality (=).

¬(x1 = x2) ∧ x1 = 4

• Theory of Linear Arithmetic adds arithmetic functions, such as + and −,
and arithmetic predicates, like = or <.

(3y + 2x− 1 = 0) ∧ (0 < x)

• Theory of Bit Vectors allows the use of binary numbers and binary oper-
ators, such as bit-shift (�), XOR (⊕), or binary negation (∼).

(a� 2) = c ∧ c⊕ d

3 Theory of Equality Logic With Uninterpreted
Functions

The theory of equality logic with uninterpreted functions (EUF) extends Boolean
logic and adds the equality predicate (=). In EUF the equality is a binary pred-
icate, which evaluates to True or False based on the axioms for an equivalence
relation:

∀x. x = x (Reflexivity)

∀x. ∀y. x = y =⇒ y = x (Symmetry)

∀x. ∀y. ∀z. x = y ∧ y = z =⇒ x = z (Transitivity)

Compared to Boolean logic variables in EUF are non-binary and are defined
over an infinite domain, such as N or R. Functions in EUF are uninterpreted
and only maintain the property of functional congruence:

Definition 3.1 (Functional Congruence)
For each n > 0 and n-ary function f

∀x̄, ȳ.
n∧

i=1

xi = yi =⇒ f(x̄) = f(ȳ)

By using uninterpreted functions the details and characteristics of functions
are ignored. This can generalize and simplify theorems and proofs. However,
some properties of a function can be lost when replacing the function with an
uninterpreted function.
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Example 3.1 (Uninterpreted Functions & Commutativity). For some fixed
x1,x2,y1, and y2 the following formula is valid as + is commutative.

x1 = y1 ∧ x2 = y2 =⇒ x1 + x2 = y2 + y1

When generalizing + with an uninterpreted function symbol f , we obtain:

x1 = y1 ∧ x2 = y2 =⇒ f(x1, x2) = f(y2, y1)

The formula is no longer valid as the uninterpreted function f is not commuta-
tive. A constraint can be added to the formula to keep the commutativity.

x1 = y1 ∧ x2 = y2 =⇒ f(x1, x2) = f(y2, y1) ∨ f(x1, x2) = f(y1, y2)

3.1 Congruence Closure Algorithm

The congruence closure algorithm was originally described by Shostak (1978).
With this algorithm, the satisfiability of a conjunction (∧) of equalities and
inequalities with uninterpreted functions can be determined.

Algorithm (Congruence Closure)

Let F be a conjunction of equalities and inequalities with uninter-
preted functions.

F : (

m∧
i=1

si = ti) ∧ (

n∧
j=m+1

sj 6= tj)

Let S be the set of all equalities and inequalities in F , and let T
denote the set of all terms and subterms in F .

A partition of T is constructed as follows:

(1) initially put all terms and subterms in their own congruence
class

{{t} | t ∈ T}

(2) for all 1 ≤ i ≤ m
a. with si = ti merge the congruence classes of si and ti

b. propagate the new congruence with symmetry, transitivity,
and functional congruence

The constructed partition on T induces a congruence relation ∼ on T . ∼ is
a congruence relation, because it satisfies the axioms for an equivalence relation
(reflexive, symmetric, and transitive), and also respects functional congruence.

A congruence closure is the smallest congruence relation that contains an-
other relation R. ∼ is the congruence closure that contains all equalities in F
(Shostak, 1978), hence the algorithm is called congruence closure algorithm.
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The satisfiability of the formula F can be determined with the following the-
orem (Shostak, 1978).

Theorem 1
F is satisfiable ⇐⇒ @si, ti ∈ T such that si ∼ ti and (si 6= ti) ∈ S.

Proof Idea.

=⇒ (Soundness). Assume F is satisfiable. There has to exists a model for F .
All si, ti ∈ T with si ∼ ti must have the same value in the model, because the
model satisfies reflexivity, symmetry, transitivity, and functional congruence.
Hence there cannot be an inequality (si 6= ti) ∈ S.

⇐= (Completeness). Assume there are no si, ti ∈ T such that si ∼ ti and
(si 6= ti) ∈ S. The goal is to construct a model for F . This is done by
constructing a Herbrand model for F . A Herbrand model assigns a value to
each term in the term universe T∞ =

⋃∞
i=0 Ti. Ti is inductively defined as

follows:
T0 = T, and Ti+1 = {f(t1, . . . , tr) | ti ∈ Ti} ∪ Ti

where f ranges over all function symbols that appear in F . The term universe
contains all possible terms that can be constructed by using all constants and
function symbols that appear in F . The height of the term universe is infinite
because functions can be arbitrarily nested.

For all terms t ∈ T , the model can directly assign values based on ∼. For
all remaining terms in the term universe, values are assigned with an inductive
construction based on functional congruence.

If for a term t = f(x1, . . . , xr) ∈ Tj+1−Tj there exists a functional congruent
term in Tj , then the model can assign the value from the functional congruent
term to t. Otherwise the model assigns a new value to t. The new value is
obtained by evaluating f(x1, . . . , xr) with the values of its arguments. For all
arguments xi, values already have been assigned as they are all contained in Tj .

The correctness of this construction is then proven by induction over the
height of the term universe (Shostak, 1978).

Example 3.2 (Congruence Closure Algorithm: unsatisfiable formula).

f(a, b) = a ∧ f(f(a, b), b) 6= a

• initial partition:

{{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• impose f(a, b) = a:

{{a, f(a, b)}, {b}, {f(f(a, b), b)}}
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• a ∼ f(a, b), with functional congruence f(a, b) ∼ f(f(a, b), b):

{{a, f(a, b), f(f(a, b), b)}, {b}}

The partition yields f(f(a, b), b) ∼ a, but the formula contains the inequality
f(f(a, b), b) 6= a. With Theorem 1 the formula is unsatisfiable.

Example 3.3 (Congruence Closure Algorithm: satisfiable formula).

a = b ∧ b = c ∧ g(f(a), b) = g(f(c), a) ∧ f(a) 6= b

• initial partition:

{{a}, {b}, {c}, {f(a)}, {f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• impose a = b:

{{a, b}, {c}, {f(a)}, {f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• impose b = c:

{{a, b, c}, {f(a)}, {f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• a ∼ c, with functional congruence f(a) ∼ (c):

{{a, b, c}, {f(a), f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• f(a) ∼ f(c) and b ∼ a, with functional congruence g(f(a), b) ∼ g(f(c), a):

{{a, b, c}, {f(a), f(c)}, {g(f(a), b), g(f(c), a)}}

There are no inequalities that contradict ∼. From Theorem 1 follows that the
formula is satisfiable.

Satisfiability of Arbitrary EUF-Formulas

The congruence closure algorithm can only decide the satisfiability for conjunc-
tions of equalities and inequalities. The satisfiability for an arbitrary formula in
EUF is determined by determining the unsatisfiability of the disjunctive normal
form (DNF) of the negated formula. A DNF is unsatisfiable if all disjuncts are
unsatisfiable. As each disjunct in a DNF is a conjunction, the unsatisfiability
of each disjunct is determined with the congruence closure algorithm.

The disadvantage of this approach is that the DNF of a formula can be
exponentially larger than the original formula. This results in the decision pro-
cedure for an arbitrary formula in EUF having exponential worst-case runtime.
That is expected because the decision problem for arbitrary formulas in EUF is
NP-complete (Shostak, 1978).
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3.2 Efficient Implementation of the Congruence Closure
Algorithm With Union-Find

One efficient implementation of the congruence closure algorithm uses the Union-
Find algorithm and represents a formula as a Directed-Acyclic-Graph (DAG).
The implementation given here is based on an implementation given by Nelson
and Oppen (1980).

3.2.1 Union-Find Algorithm

Union-Find is an algorithm to efficiently maintain a partition on a set of ele-
ments. Every partition induces an equivalence relation with equivalence classes.
In Union-Find the membership of an element to an equivalence class is only
maintained by a reference to a single representative element of the equivalence
class. This allows Union-Find to have a near-constant (inverse Ackermann’s
function) worst-case time complexity (Tarjan, 1975).

Figure 1 shows a graphical representation of a partition (result from example
3.2) in Union-Find.

Two operations are defined to manipulate the partition:

• Find(v): returns the representative element of the equivalence class, which
contains the element v.

• Union(u,v): combines the two equivalence classes that contain the ele-
ment u and the element v to one single equivalence class.

a b

f(a, b) f(f(a, b), b)

Figure 1: The graphical representation of the partition
{{a, f(a, b), f(f(a, b), b)}, {b}} in Union-Find is shown here. A dashed
edge represents the reference to the representative element of an equivalence
class.

3.2.2 Directed-Acyclic-Graph (DAG)

A Directed-Acyclic-Graph (DAG) is a directed graph with no directed cycle. A
DAG G = (V,E) consists of a set of nodes V , and a set of edges E. Every node
v ∈ V has a label λ(v). The number of outgoing edges from v is denoted by
δ(v). The i-th successor of v is denoted by v[i] = u ∈ V , for 1 ≤ i ≤ δ(v).

Every term and subterm in a formula F is represented by a node in the DAG.
The label for each node corresponds to the root constant or function symbol of
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the associated term or subterm. An edge is inserted from every function symbol
to all its arguments.

The construction of a DAG for a formula only considers the relationship
between function symbols and arguments. Equalities and inequalities in the
formula are not considered for the construction of the DAG. Figure 2 shows two
DAGs that each represent a formula.

u1
λ(u1) = f

u2
λ(u2) = f

u3
λ(u3) = a

u4
λ(u4) = b

(a)

v1
λ(v1) = f

v2
λ(v2) = f

v3
λ(v3) = f

v4
λ(v4) = f

v5
λ(v5) = f

v6
λ(v6) = a

(b)

Figure 2: (a) DAG representing the formula f(a, b) = a ∧ f(f(a, b), b) 6= a,
where e.g. u2 represents the subtrem f(a, b). (b) DAG representing the formula
f5(a) = a ∧ f3(a) = a ∧ f(a) 6= a.

3.2.3 Implementation

The Union-Find algorithm is sufficient to maintain and propagate an equiva-
lence relation, but the partition constructed by the congruence closure algorithm
induces a congruence relation. The induced congruence relation also respects
functional congruence. To also maintain and propagate functional congruence,
the Union operation is extended by Merge.

An auxiliary function Congruent is defined to determine if two nodes rep-
resent congruent subterms.

1: function Congruent(u,v)
2: if λ(u) 6= λ(v) ∨ δ(u) 6= δ(v) then return FALSE
3: for 1 ≤ i ≤ δ(u) do
4: if Find(u[i]) 6= Find(v[i]) then return FALSE

5: return TRUE
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1: function Merge(u,v)
2: if Find(u) 6= Find(v) then
3: let Pu and Pv be sets of all congruent predecessors for u and v
4: Union(u, v)
5: for (x, y) ∈ Pu × Pv do
6: if Find(x) 6= Find(y) ∧Congruent(x, y) then
7: Merge(x, y)

Merge uses the Union operation and additionally propagates functional
congruence. Representing a formula as a DAG allows an efficient propagation
of functional congruence in Merge. Functional congruence is propagated from
function arguments to function symbols. As function arguments are successors
of function symbols in the DAG, functional congruence is propagated to congru-
ent predecessors. Every congruence class has an associated set that contains all
nodes that are predecessors to any node in the congruence class. Let Pu denote
this set for the congruence class that contains the node u. With every Union
operation the corresponding predecessor sets are merged.

u1
λ(u1) = f

u2
λ(u2) = f

u3
λ(u3) = a

u4
λ(u4) = b

(a)

u1
λ(u1) = f

u2
λ(u2) = f

u3
λ(u3) = a

u4
λ(u4) = b

(b)

Figure 3: A simple example to demonstrate the propagation of functional
congruence. A dashed edge again represents the reference to the representa-
tive element of an equivalence class. In (a) a DAG representing the formula
a = b ∧ f(a) = f(b) is shown. The equation a = b was just imposed. (b)
shows the same DAG, but the new congruence was propagated via functional
congruence, resulting in the partition {{a, b}, {f(a), f(b)}}.

In Figure 3 the propagation of a new congruence via functional congruence
is shown in a simple example. The equality a = b is imposed in Figure 3 (a), by
merging the congruence classes of a and b. This is done by changing the reference
of u3 from itself to u4, hence u3 and u4 are now in the same congruence class.
The predecessor set for u3 is Pu3

= {u1}, and for u4 it is Pu4
= {u2}. In this

case the only pair of predecessors from both sets is (u2, u1). Because u2 and
u1 are functionally congruent, the congruence is propagated to u2 and u1 by
merging their congruence classes in Figure 3 (b).

With Congruent and Merge the decision procedure based on the congru-
ence closure algorithm is implemented as follows:
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Let F be a conjunction of equalities and inequalities with uninter-
preted functions.

F : (

m∧
i=1

si = ti) ∧ (

n∧
j=m+1

sj 6= tj)

Let τ(t) be the node in the DAG for F , that corresponds to the term
or substerm t in F .

1: for 1 ≤ i ≤ m do
2: Merge(τ(si), τ(ti))

3: for m+ 1 ≤ j ≤ n do
4: if Find(τ(sj)) = Find(τ(tj)) then return UNSATISFIABLE

5: return SATISFIABLE

Nelson and Oppen (1980) have shown that the congruence relation con-
structed in this implementation is the congruence closure that contains all equal-
ities in F . From this follows that for any subterms s and t in F

Find(τ(s)) = Find(τ(t)) ⇐⇒ s ∼ t

holds. Where ∼ is the congruence closure, that contains all equalities in F .
With this, the correctness of the implementation can be verified.

If the procedure returns UNSATISFIABLE then for some m + 1 ≤ j ≤ n
there exists sj and tj , with Find(τ(sj)) = Find(τ(tj)). sj and tj are in the
same congruence class. As F contains the inequality sj 6= tj , from Theorem 1
follows that F is unsatisfiable.

When the procedure returns SATISFIABLE then there is no m+1 ≤ j ≤ n
such that sj and tj are in the same congruence class. From Theorem 1 follows
that F is satisfiable.

3.2.4 Complexity

Let G = (V,E) be the DAG, which represents the formula F . Let n = |V | be
the number of nodes in G, and let m = |E| be the number of edges in G.

With n nodes in G there can be at most n − 1 Merge operations until
all nodes are in the same congruence class. Hence there can be at most be
n− 1 = O(n) recursive Merge operations in total. From this it can be proven
that for any sequence of Merge operations the number of Congruent calls is
bounded by O(mn), and the number of Find calls from Congruent (line 4)
is bounded by O(m2) (Nelson and Oppen, 1980).

For O(n) Merge operations there are O(n) Find calls from line 2, plus
O(mn) Find calls from line 6, and O(m2) Find calls from Congruent. In total
there are O(m2) Find calls, which take O(m2) time. Each Union operation
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takes constant time (Tarjan, 1975), resulting in O(n) time for O(n) Merge
operations. The time cost for maintaining the predecessor sets is O(n2) (Nelson
and Oppen, 1980).

All in all, this results in the worst-case time complexity of O(m2) for this
implementation.

4 Conclusion

This paper gave an introduction to SMT and EUF. The presented implemen-
tation of the congruence closure algorithm has a worst-case time complexity of
O(m2). Downey et al. (1980) have implemented a faster version (O(m log2m))
of the congruence closure algorithm, by using hash tables instead of DAGs.

An efficient solver for EUF with an implementation of the congruence closure
algorithm is part of any modern SMT solver, such as Z3 (Moura and Bjørner,
2008) or CVC4 (Barrett et al., 2011).

With SMT solvers, tools for program verification, such as OpenJML (Cok,
2011), have been created. OpenJML can verify a program by simply annotating
code with pre- and post-conditions.

Besides tools for program verification, SMT solvers have numerous other
applications, such as testcase generation, static analysis, and hardware verifi-
cation. SMT solvers have also been integrated into interactive theorem provers
for higher-order logic, such as Isabelle/HOL (Nipkow et al., 2002).

In almost all of the applications, SMT solver must be able to efficiently
reason about equality.
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