
A Decidable Fragment of Separation Logic
Seminar: Automated Reasoning

Florian Sextl1

1Technical University of Munich, sextl@in.tum.de

Abstract. This paper deals with a fragment of separation logic defined by
Berdine et al. in [1]. It focuses on decidability of entailments and is limited
to simple linked lists. With the restrictions provided by the fragment, a
powerful rule is defined: UnrollCollapse. This rule allows arguing about lists
in an efficient and trivially decidable manner. Based on these findings, a
proof system is introduced, on top of which a decision procedure is defined.
With, inter alia, this procedure, the fragment is proven to be decidable.

1. Introduction

Low-level imperative programs written in system programming languages are key to
present day digital infrastructure. Nearly all system programming, i.e., programming of
operating systems, device drivers and the like, is done at a rather low level. Low-level
programming provides simple optimization possibilities and direct control over memory.
Though, this kind of direct control has to be handled with great care as even small
faults can lead to severe problems in the affected system. Thus, especially low-level
programs used in critical infrastructure benefit from formal verification that proves them
correct. Even though formal verification allows for this kind of safety by design, it
is rather seldomly used in real-world projects due to its high complexity. To tackle
this problem, several (semi-)automated reasoning methods have been introduced by the
research community. One method meant to verify properties about the memory usage of
low-level programs is separation logic. Separation logic is an extension of the Hoare logic
first introduced by John C. Reynolds in [5]. It is one of the most useful logic systems to
argue about low-level imperative programs in regard to concurrent memory safety [4],
inter alia. Despite this extension, basic separation logic focuses on shared mutable data
structures on the heap.

1

mailto:sextl@in.tum.de

2. A Decidable Fragment of Separation Logic

In the following, a decidable fragment of the original basic separation logic is introduced
and investigated. As such, it uses a subset of operators from separation logic and limits
their use to focus on arguing about lists. This fragment was originally introduced by
Berdine et al. in [1].

2.1. A Fragment of Separation Logic

The original paper about separation logic introduced an artificial low-level programming
language with dedicated commands for memory allocation and deallocation as a basis for
the logic itself. The commands ensure several structural properties, such as no memory
leaks when executed on a valid start state. In addition, pointer arithmetic is prohibited
for the fragment of separation logic explored in this work.

Separation logic formulæ comprise two parts: the so-called pure formula part Π that
consist of predicates from a subset of propositional logic and the so-called spatial formula
part Σ. In general, both parts argue about values from a specific value set V which
contains a special symbol for a dangling pointer, namely nil. These values can be used as
both addresses into the memory as well as real computational values. The memory model
derived from the artificial programming language used with separation logic consists of
a stack s that maps variables to heap addresses (denoted as JvKs = a where v ∈ V) and
a heap h that maps finitely many L-values (i.e., values that are not nil) to arbitrary
other values (cf. fig. 1). This mapping is also called the points-to relation and is a
relation between a memory cell address and its content. Accordingly, a variable used
as a left-hand side with this relation encodes a memory cell address, which is stored on
the stack. With the points-to relation, reachability of a memory cell can be decided by
computing the transitive closure of all points-to pairs within the heap. This fact enables
precise arguing about the heap space.

s:

x

y

3

27

h:

3/4 4/27

27/nil 28/58

Figure 1: The memory model consists of a stack s and a heap h. The heap cells are
described in the format address/value.

Together, the heap and the stack form a program state. Formulæ are then interpreted
as predicates on these states. Thereby, the pure parts argue about equalities and in-
equalities of expressions, which are comprised of either variables or nil. For variables,
equality is defined on their respective address according to the stack, i.e., for x, y vari-
ables x = y ⇔ JxKs = JyKs. These simple pure formulæ can also be negated or combined
by logical conjunction with the neutral element true. In contrast to this, spatial formulæ

2

comprise simple points-to facts (written as E1 7→ E2) of expressions as well as ls struc-
tures, which are described below. These simple spatial formulæ can be combined by the
separating conjunction (∗) for heaps that have non-overlapping domains (cf. fig. 2(a)).
The according neutral element is emp - the empty heap. Another operator on spatial
formulæ is the so called separating implication (—∗). Even though it is not used in the
fragment, it is necessary to formulate specific properties and argue about meta-logic
context. The separating implication Σ1—∗Σ2 denotes a subheap that, if combined with
a heap that satisfies Σ1, would satisfy Σ2. With this definition, every spatial formula
can be extended trivially to Σ ≡ Σ1 ∗ (Σ1—∗ Σ) for an arbitrary, non-contradicting Σ1

(cf. fig. 2(b)).

Σ1 ∗ Σ2

3/4 4/7

13/1

17/2

31/1

7/85/nil

12/5

20/9

39/338/437/7

(a) A separating conjunction of two spa-
tial formulæ Σ1 and Σ2 and fitting non-
overlapping heap models. The heap
cells are again labeled in the format ad-
dress/value.

Σ1 ∗ (Σ1—∗ Σ2)

(b) A separating implication with the miss-
ing extension Σ1. The arrows encode
points-to relations that are necessary to
satisfy Σ2.

Figure 2: Formulæ about heap space.

Although ls structures are handled as simple spatial formulæ, they can be defined
using other spatial formula components. To put it simple, ls structures represent linked
lists on a low level. As such, they can be formulated as a series of points-to facts where
each cell value is the address of the next cell. Linked lists are the core to the reasoning
for which the fragment described in this work is meant. In general, ls structures could
contain arbitrary values, yet in the following only lists without content are considered
as this simplification does not prohibit a valid extension to lists with arbitrary content.
The ls structure is defined by two expressions, of which the first evaluates to the address
of the first cell in the list, whereas the second is the content of the last cell in the list
(cf. fig. 3). This content may be another address or the dangling pointer. With this, the
shortest possible list is the empty list ls(E1, E2) where E1 = E2 for a given state. This
list is equivalent to the empty stack emp. Although this notation could also be used to
describe a circular list, this case is not allowed within the fragment. Circular lists would
break unambiguousness within a spatial formula and are, therefore, only allowed by the
combination of two distinct heap parts ls(x, y) ∗ y 7→ x. Any ls structure that ends with
a dangling pointer is considered a full list, whereas a valid pointer at the end denotes
a list segment. This also means, that there can not be any dangling pointer within a
list. On another note, two non-overlapping lists are encoded as ls(x,nil) ∗ ls(y,nil) and
two lists that share a common tail are encoded as ls(x, z) ∗ ls(y, z) ∗ ls(z,nil). This kind

3

of explicit sharing of memory cells is the only allowed way of memory sharing for this
fragment.

ls(x,z):

x . . . y z

Figure 3: A simple linked list from the cell with address x to (possibly) another cell with
address y that points to the next element z1. The arrows are again points-to
relations encoded in the cells’ values.

Formulæ can be evaluated under a certain state; this is then called a satisfaction and
written as s, h |= Π | Σ. A satisfaction takes a state as a memory model and evaluates
whether the formula is satisfied by this specific model. This property can be checked
in linear time in correspondence to the combined size of the state and the formula. To
achieve this, the formula has to be checked step by step until either a subformula is not
satisfied for this state or no subformula remains to be checked. Both pure subformulæ
and points-to facts can be checked directly with the state, whereas ls structures have
to be followed through. A concrete decision algorithm would therefore first check the
simple parts and then go through all ls structures destructively. This means, that each
points-to relation is deleted from the heap model after it has satisfied a sublist. With
this, circular lists and implicit sharing can be detected.

Based on these satisfactions, the more important entailments can be defined as a
relation between two formulæ Π | Σ ` Π′

| Σ′. This relation is valid if and only if for
all states s, h that satisfy s, h |= Π | Σ (the antecedent) the satisfaction s, h |= Π′

| Σ′ (the
consequent) is also valid. Entailments come with a handful of simple properties that can
be deduced directly from their definition. First of all, entailments are reflexive, even up
to equality (e.g. (x = y ∧ E = F) | x 7→ E ` y 7→ F). On another note, inequality
to nil can be implied by every valid points-to fact (e.g. x 7→ E ` x 6= nil | x 7→ E).
Furthermore, points-to facts combined by the separating conjunction imply inequality
of their addresses (e.g. x 7→ E ∗ y 7→ F ` x 6= y | x 7→ E ∗ y 7→ F). The definition
of ls structures can also be trivially entailed (e.g. x = y | emp ` ls(x, y) and
x 6= y | x 7→ y ` ls(x, y) for lists of length zero and one respectively).

Entailments can be used to rewrite a formula to a better suited form before or after one
command step in the whole separation logic. Hence, the fragment’s focus on automation
of entailment decision can be used as part of a bigger (semi-) automated proof procedure.

2.2. UnrollCollapse

One important property ensured by the fragment is precision. A formula is a precise
predicate if for any given state, no more than one subheap satisfies it. That means, that

1This element may also not exist, i.e., it may also be a nil address.

4

for a satisfied precise predicate there is an unambiguous heap part which it corresponds
to. Every points-to fact is by definition precise, as a heap storage can map cell addresses
to values only surjectively. If the points-to fact is satisfied, there is exactly one memory
cell with the corresponding address and value. Similarly, a separating conjunction of
two precise formulæ is itself precise by definition. Precision of ls structures is slightly
more complex as lists could be arbitrarily long and this length is not denoted directly
in the ls structure. Yet, as precision is defined for a given state with a fixed heap,
the length of a list can be determined directly from the points-to relation of this heap.
With this information, every ls structure can be decomposed into a series of points-to
facts connected via separating conjunctions. Hence, ls structures are also precise. To
summarize, all spatial formulæ that can be validly built within the fragment are precise
by default.

The validity of entailments can be decided näıvely by checking all satisfying models for
the antecedent against the consequent. The number of these models depends directly
on the concrete antecedent formula. Although formulæ consisting solely of points-to
facts and separating conjunctions can only be satisfied by models with a heap of the
same size as the formula2, ls structures can be satisfied by arbitrarily long chains of
pointers. Based on this observation, it is clear that formulæ without ls structures can
be satisfied by only a finite number of models modulo substitution. Due to this, an
entailment without ls structures in the antecedent can be decided in finite time, whereas
an antecedent with ls structures introduces possibly infinitely many models that have
to be checked and, accordingly, requires a different approach.

The idea behind the approach presented in the following is to abstract an arbitrary
list by two basic cases: first the empty list and second the list with two elements as a
representation for all longer lists3. This intuitive description can be formulated as the
following proposition from [1]:

Proposition 1. The following rule is sound:

UnrollCollapse
(Π ∧ E1 = E2) | Σ ` Π′

| Σ′

(Π ∧ E1 6= E2 ∧ x 6= E2) | (E1 7→ x ∗ x 7→ E2 ∗ Σ) ` Π′
| Σ′

Π | ls(E1, E2) ∗ Σ ` Π′
| Σ′ x /∈ fv(Π, E1, E2,Σ,Π′,Σ′)

In this context, fv denotes the set of variables occurring in the given formula parts.
The UnrollCollapse rule encapsulates the idea that the inductive definition of a list4

can be abstracted to non-inductive base cases. As an example, UnrollCollapse allows to
prove

(a 6= c ∧ b 6= c) | a 7→ b ∗ ls(b, c) ` a 6= c | ls(a, c)

by proving
(a 6= c ∧ b 6= c ∧ b = c) | a 7→ b ` a 6= c | ls(a, c)

2This follows directly from precision.
3A list of length one can be treated as a special case of a list of length two.
4The list is assumed to be a whole list not a mere segment and, therefore, ends in a dangling pointer.

5

and
(a 6= c ∧ b 6= c ∧ x 6= c) | (a 7→ b ∗ b 7→ x ∗ x 7→ c) ` a 6= c | ls(a, c)

The antecedent of the first entailment contains a contradiction (b 6= c ∧ b = c). Thus,
there exists no state that would satisfy this formula and, consequently, all satisfying
models for the antecedent (none in this case) satisfy also the consequent. With this, the
first entailment holds by definition. The second entailment can also be shown to hold
as the points-to facts form an acyclic path from a to c and are, as such, semantically
equivalent to the ls structure ls(a, c).

In general, the UnrollCollapse rule enables more sophisticated decision procedures
than näıve model checking. Before such a procedure can be found, the proposed sound-
ness of UnrollCollapse needs to be proven.

Proof. For soundness the proposition has to be valid for true premises. For this reason,
the premises are assumed to be valid:

(Π ∧ E1 = E2) | Σ ` Π′
| Σ′ (1)

(Π ∧ E1 6= E2 ∧ x 6= E2) | (E1 7→ x ∗ x 7→ E2 ∗ Σ) ` Π′
| Σ′ (2)

for x /∈ fv(Π, E1, E2,Σ,Π′,Σ′). To prove the conclusion, the entailment is split and
investigated for a fixed but arbitrary state s, h. That means, that on one hand the
antecedent becomes another assumption s, h |= Π | ls(E1, E2) ∗ Σ, whereas on the other
hand the consequent becomes the new goal s, h |= Π′

| Σ′. To prove this goal, a case
distinction about the equality of E1 and E2 is necessary:

Case JE1Ks = JE2Ks:
In this case, assumption (1) holds and the goal can be directly concluded.

Case JE1Ks 6= JE2Ks:
In this case, h can be divided into two non-empty parts of which one models the

list ls(E1, E2) whereas the other models Σ: h = hls ∗ hΣ. With these two subheaps a
new variable x can be introduced to formulate two new satisfactions: s′, hls |= E1 7→
x ∗ ls(x,E2) and s′, hΣ |= (Π ∧ E1 6= E2) | Σ where s′ = [s|x→ l] for some address l.

For the next step, a new intuition about lists is required; i.e., a valid entailment with
a ls structure of length two implies that the consequent is insensitive to the actual model
of the list. This intuition is formalized in the following lemma (modified from [1]):

Lemma 1.

If Π | ls2(E1, E2) ∗ Σ ` Π′
| Σ′ (3)

and s, h |= (Π ∧ E1 6= E2 ∧ JE2Ks /∈ dom (h)) | Σ (4)

then s, h |= Π′
| (ls(E1, E2)—∗ Σ′)

The proof for this lemma is omitted here due to its high complexity but can be
found in [1] Appendix A.4. Formula (3) denotes the valid entailment with the list of

6

length two (ls2(E1, E2)). On the other hand, formula (4) describes a model s, h that
satisfies the antecedent without the original list (Π | Σ) but with an other non-empty
list (E1 6= E2 ∧ JE2Ks /∈ dom (h)). If both (3) and (4) are valid, the model s, h satisfies
also the consequent of (3) (Π′

| Σ′) minus a fitting list model (ls(E1, E2)—∗ Σ′).
Now, lemma 1 can be applied to prove the remaining goal by instantiating its premises.

Premise (3) requires a ls structure of length two. In general, a ls structure of length
two can be encoded as E1 7→ E2 ∗E2 7→ E3 if all used expressions are not equal to each
other5. Hence, assumption (2) satisfies the premise (3). Then again, the second premise
(4) is satisfied by the model s′, hΣ, because s′, hΣ |= (Π∧E1 6= E2) | Σ holds as deduced
before and JE2Ks /∈ dom (h) holds as E2 has to be a dangling pointer by definition. In
general, a dangling pointer means that the expression evaluates to no valid address in
the domain of the heap h and thereby also no valid address in any subheap like hΣ.
With both premises satisfied, the conclusion s′, hΣ |= Π′

| (ls(E1, E2)—∗ Σ′) of lemma 1
holds. Together with s′, hls |= E1 7→ x ∗ ls(x,E2) ≡ ls(E1, E2) the combined satisfaction
s, h |= Π′

| Σ′ holds by the definition of —∗. This satisfaction is exactly the goal that had
to be proven.

In addition to soundness, the UnrollCollapse rule needs to be shown helpful for decid-
ing validity of entailments, as well. The aforementioned intuition, that all entailments
without a list are decidable, can be formalized as the following lemma:

Lemma 2. For fixed Π,Σ,Π′,Σ′ such that no subformula of Σ is of form ls(E1, E2),
checking Π | Σ ` Π′

| Σ′ is decidable.

The proof for this lemma can be sketched out as the intuition about points-to facts
and separating conjunctions from before. A similar proof sketch can be found in [1], p.
102, whereas the complete proof can be found in Appendix A.2 in the same source.

The lemma can then be used to prove the following corollary:

Corollary 1 (Validity Decidable). For fixed Π,Σ,Π′,Σ′, checking Π | Σ ` Π′
| Σ′ is

decidable.

Proof. By applying UnrollCollapse repeatedly, any subformula of Σ containing a ls struc-
ture can be rewritten to a set of entailments which do not contain any ls structure. Due
to lemma 2 all entailments which are part of the fragment are decidable.

2.3. Proof System and Decision Procedure

In the following, UnrollCollapse is used as the core of a proof system. This system
comprises several rules, which encode specific proof steps. The main proof idea is to first
enrich the antecedent of an entailment with information that is sound to conclude from
the formula alone and afterwards simplify both the antecedent and the consequent in
parallel until an axiom is applicable. With this idea, all rules can be seen as functions
that return a proof for their conclusion when given proofs for their premises. Rules

5The inequality of E1 and E2 follows directly from the separating conjunction.

7

without a premise are axioms and can be seen as constant proofs. UnrollCollapse is the
only rule in this system with more than one premise. This means, that all other rules are
mere rewriting rules that do not split up the computation of the proof. For simplicity,
the complete rule system is omitted here but can be found in Appendix A.

As all rules except UnrollCollapse perform rather simple rewriting operations that
can be proven sound directly from the definition of the fragment6, soundness can be
concluded for the whole proof theory. Soundness means in this case that on the one
hand all entailments which can be derived from the system7 are valid and on the other
hand a tree of rule applications from an entailment at the root to axioms at the leafs is
a proof for this entailment and can be found if and only if the entailment is valid.

On another note, the rule system is claimed to be complete for the whole fragment of
separation logic by the original paper [1]. The authors implicitly assume this property
and provide no explicit proof or even intuition on why this holds. Completeness of the
proof system is thus also assumed in this work and can only be intuitively deduced from
the set of rules itself. Although a thorough reasoning about the property of completeness
is omitted here, it can be concluded that the aforementioned proof tree can be built for
all valid entailments in the fragment. This is equivalent to the proposition that there
exists no proof tree for all invalid entailments.

Based on this rule system, a simple recursive decision procedure PS(g) can be formu-
lated that either fails or returns a proof for the given goal entailment g. It is depicted
as algorithm 1.

Algorithm 1 Decision Procedure

Rs← {(r, p) | r a rule, p a predicate} . The rules with application conditions.

function PS(g)
if ∃(r, p) ∈ Rs. UnifiesWithConclusion(g, r) ∧ p(g) then

p0, . . . , pn ← premisesOf(r)
return r(PS(p0), . . . , PS(pn))

else
Fail

The algorithm picks in each step one rule in a nondeterministic manner, such that the
current goal can be unified with the rule’s conclusion. In addition, some rules require
certain side conditions that have to be met for the rule to be applicable. If a rule exists,
for which both the unification succeeds and the predicate holds for the goal, its premises
are set as new goals and the procedure is called recursively. The recursive calls then
either fail or return a proof for their subgoal. Afterwards, the rule is called with the
proven premises and returns the proof for the original goal. Otherwise, if the rule is an
axiom, there are no premises and the rule itself is returned as a proof. If more than one

6In addition, UnrollCollapse was proven sound in proposition 1.
7Deriving of entailments from the rules is similar to deriving a word from a formal grammar. By

starting from an axiom and applying rules in a specific order, any valid entailment can be formulated
modulo substitution of variable names and changes in the order.

8

rule would be applicable, their order is inconsequential as the rules are defined to be
orthogonal in how they transform the formula.

The predicates appended to the rules range from simple assertions about not adding
subformulæ twice to complex structural conditions. The most important structural
predicate is the normal form for formulæ from the separation logic fragment. A formula
from the fragment is in normal form if and only if it is maximally explicit, i.e., if its
pure formula part consists of only pairwise inequalities of all variables and inequalities
of all variables with nil. In addition, the spatial formula part is required to consist of
only points-to facts from variables to expressions combined by separating conjunction.
For example, the formula

x 6= y | x 7→ y ∗ y 7→ nil

can be enriched to normal form as such:

(x 6= y ∧ x 6= nil ∧ y 6= nil) | x 7→ y ∗ y 7→ nil

As UnrollCollapse allows to remove ls structures from the antecedent of an entailment,
every antecedent can be enriched to normal form. The soundness of this step depends
solely on the soundness of the rule system that is used for the enrichment, which was
shown before. On top of this, the normal form is particularly useful as it allows for
parallel simplifications in both the antecedent and the consequent. Hence, the proof
system’s rules can be divided into those that enrich the antecedent to become normal
form and those that use the normal form to simplify both antecedent and consequent
leading to applicability of an axiom in the long run. This corresponds to the basic idea
the proof system is built upon.

On another note, the normal form can be used to argue about termination of the
algorithm. Termination of PS can be shown with regard to the size of entailments. The
size of an entailment is defined as a triple of the number of ls structures, the number of
missing inequalities in the antecedent’s pure part and the length of the whole entailment
(defined as the number of simple subformulæ). If the antecedent of an entailment is in
normal form, its size is minimal in regard to the first two measurements. The termination
of the algorithm can therefore be proven trivially by showing that all rules decrease the
lexicographical size of the entailment, that means have a lesser size for their premises
as for their conclusion. Thereby, the enriching rules reduce the first two measurements
and the simplification rules reduce the last measurement. In the long run, all three
measurements are reduced to a minimum if the entailment is in fact valid. Due to the
rule system being complete, termination can be concluded for all entailments.

Besides termination, a decision procedure needs also to fail if and only if the entailment
is invalid. In the case of the PS algorithm, this means that the computation gets stuck
when no fitting rule is found. In this case a so called Bad Model [1] can be constructed,
which then serves as a countermodel for the entailment and shows its invalidity. A Bad
Model for a formula is a state that is explicit in its mapping of variables to addresses via
the stack and that satisfies the formula. There exists a Bad Model for every formula in
normal form. As the procedure can only be stuck if the antecedent is already in normal

9

form8, there exists a Bad Model for the antecedent of a stuck goal entailment. It can
then be proven by case distinction on the consequent that there also exists a Bad Model
for the antecedent that does not satisfy the consequent. The concrete proof is omitted
here for simplicity as well as the corresponding proof for invalidity preservation by the
proof system. Both can be found in [1] in their entirety and are directly based on the
soundness and completeness of the rule system. Nonetheless, it can be concluded that
PS fails if and only if it has found a disproof of the goal, i.e., the goal is invalid.

In conclusion, PS terminates for all entailments and has then either found a sound
proof due to the soundness of the used rules or an implicit disproof for which a Bad
Model can be constructed as a countermodel. With this properties, the algorithm can
be concluded to be a valid decision procedure for the fragment of separation logic this
work focuses on.

2.4. Examples

In the following, two simple examples are explained to show how the decision procedure
can be used. Unchanged subformulæ are mostly omitted in each step for readability
purposes. The rules used are given in brackets and refer to those in Appendix A. The
first example is a valid entailment.

x 6= y | x 7→ y ∗ y 7→ nil ` true | ls(x,nil)

The algorithm first enriches the antecedent to normal form. As the spatial formula
part of the antecedent consist only of points-to facts, this can be achieved by adding
inequalities about x and y (twice nilNotLval), which follow directly from the points-to
facts.

⇒ (x 6= y ∧ x 6= nil ∧ y 6= nil) | · · · ` · · ·

With this done, it is possible to apply a rule that simplifies ls structures in the consequent
element by element (twice NonEmptyls).

⇒ · · · | y 7→ nil ` true | ls(y,nil)

⇒ · · · | emp ` true | ls(nil ,nil)

After simplifying the ls structure to the empty list (ls(nil ,nil)9), it rewrites it to the
empty heap (Emptyls) and proves the resulting entailment with an axiom (Tautology).

⇒ · · · | emp ` true | emp

⇒ valid �

On the contrary, the second example is invalid as the separating conjunction (x 7→
nil ∗ y 7→ nil) in the antecedent prohibits the equality (x = y) in the consequent.

true | x 7→ nil ∗ y 7→ nil ` x = y | y 7→ nil

8Otherwise, there exists a rule which enriches the formula as described above and is applicable.
9This would not be a valid list in the fragment but is considered acceptable for a subgoal.

10

The algorithm starts again with enriching the antecedent to normal form. For this it
again adds inequalities about all used variables (*Partial, twice nilNotLval).

⇒ (x 6= y ∧ x 6= nil ∧ y 6= nil) | · · · ` · · ·

After this it removes the spatial duplicates (y 7→ nil) from both sides of the entailment
(Frame). This is a sound step, as the same spatial formula part always entails itself
and does not interfere with any other formula part.

⇒ (x 6= y ∧ x 6= nil ∧ y 6= nil) | x 7→ nil ` x = y | emp

The now resulting subgoal can not be unified with any rule and so the procedure gets
stuck and fails. From this point a simple Bad Model can be found that satisfies the
antecedent but contradicts the consequent. One such Bad Model is the following:

s = [x→ 5, y → 23], h = [5→ nil |23→ nil]

Due to failure preservation, the original goal is concluded to be invalid with the Bad
Model as a disproof.

3. Conclusion

This paper summarized the concept and accomplishments of the fragment of separation
logic introduced by Berdine et al. in [1]. The fragment focuses on enabling decidability
for entailments with linked-lists. Due to the restraints of the fragment, arguing about the
inductively defined ls structures can be broken down to arguing about two non-inductive
cases, i.e., the empty list and the list with two elements. Based on this accomplishment,
a sound and complete proof system was defined. This system became the core to the
simple decision procedure PS.

In conclusion, the introduced fragment was proven to be decidable and provides a pat-
tern on how more expressive fragments can be made decidable. In addition, it introduced
a very simple decision procedure that runs extremely deterministic, as its proof tree is
only nested on applications of UnrollCollapse and does not need to backtrack in case of
getting stuck. Decision procedures with this characteristic are extremely useful and can
be taken advantage of within bigger proof systems. As such, the fragment became the
basis for the Smallfoot verification tool’s core symbolic execution mechanism [2, 3]. Due
to this, the fragment can be seen as an important step to arguing about separation logic
in general.

References

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. A Decidable Fragment of Separation
Logic. In K. Lodaya and M. Mahajan, editors, Foundations of Software Technol-
ogy and Theoretical Computer Science, volume 3328 of Lecture Notes in Computer
Science, pages 97–109, Berlin, Heidelberg, 2004. Springer.

11

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with Separation
Logic. In K. Yi, editor, Programming Languages and Systems, pages 52–68. Springer,
Berlin, Heidelberg, 2005.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular Automatic Asser-
tion Checking with Separation Logic. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W.-P. de Roever, editors, Formal Methods for Components and Objects, pages
115–137. Springer, Berlin, Heidelberg, 2006.

[4] P. W. O’Hearn. Separation logic. Communications of the ACM, 62(2):86–95, 2019.

[5] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In 17th
annual IEEE symposium on logic in computer science, pages 55–74. IEEE Comput.
Soc, 22-25 July 2002.

Appendix

A. Proof system

In the following the proof system’s rules are depicted as they are formulated in [1].
The rules in appendix A.2 and A.3 as well as UnrollCollapse are meant to bring the
antecedent in normal form, whereas the rules in appendix A.5 and A.6 simplify both the
antecedent and the consequent to match one of the axioms from appendix A.1 in the
long run.

A.1. Axioms

Tautology

Π | emp ` true | emp

Contradiction

Π ∧ E 6= E | Σ ` Π′
| Σ′

A.2. Removing of equalities

Substitution
Π[E/x] | Σ[E/x] ` Π′[E/x] | Σ′[E/x]

Π ∧ x = E | Σ ` Π′
| Σ

=ReflexiveL
Π | Σ ` Π′

| Σ′

Π ∧ E = E | Σ ` Π′
| Σ′

A.3. Introduction of inequalities

nilNotLval
Π ∧ E1 6= nil | E1 7→ E2 ∗ Σ ` Π′

| Σ′

Π | E1 7→ E2 ∗ Σ ` Π′
| Σ′

*Partial
Π ∧ E1 6= E3 | E1 7→ E2 ∗ E3 7→ E4 ∗ Σ ` Π′

| Σ′

Π | E1 7→ E2 ∗ E3 7→ E4 ∗ Σ ` Π′
| Σ′

12

A.4. UnrollCollapse

UnrollCollapse
Π ∧ E1 = E2 | Σ ` Π′

| Σ′

(Π ∧ E1 6= E2 ∧ x 6= E2) | E1 7→ x ∗ x 7→ E2 ∗ Σ ` Π′
| Σ′

Π | ls(E1, E2) ∗ Σ ` Π′
| Σ′ x /∈ fv(Π, E1, E2,Σ,Π′,Σ′)

A.5. Simplifications that require no normal form

=ReflexiveR
Π | Σ ` Π′

| Σ′

Π | Σ ` Π′ ∧ E = E | Σ′

Hypothesis
Π | Σ ` Π′

| Σ′

Π ∧ P | Σ ` Π′ ∧ P | Σ′

Emptyls
Π | Σ ` Π′

| Σ′

Π | Σ ` Π′
| ls(E,E) ∗ Σ′

A.6. Simplifications that require normal form

Frame
Π | Σ ` Π′

| Σ′

Π | S ∗ Σ ` Π′
| S ∗ Σ′

NonEmptyls
Π ∧ E1 6= E3 | Σ ` Π′

| ls(E2, E3) ∗ Σ′

Π ∧ E1 6= E3 | E1 7→ E2 ∗ Σ ` Π′
| ls(E1, E3) ∗ Σ′

13

	Introduction
	A Decidable Fragment of Separation Logic
	A Fragment of Separation Logic
	UnrollCollapse
	Proof System and Decision Procedure
	Examples

	Conclusion
	Appendices
	Proof system
	Axioms
	Removing of equalities
	Introduction of inequalities
	UnrollCollapse
	Simplifications that require no normal form
	Simplifications that require normal form

