
CoreC++

Multiple Inheritance in C++

Tobias Nipkow

Technische Universität München

– p.1



What is CoreC++?

Roughly speaking:

Jinja ⊂ CoreC++ ⊂ C++

Intention:

CoreC++ models multiple inheritance exactly as in C++.

Warning:

CoreC++ lacks many C++ features, incl. overloading.

– p.2



Overview

• Multiple inheritance in C++
• A formal model of subobjects
• Examples
• Semantics and type system

– p.3



Why multiple inheritance and C++?

Not pretty but millions of lines of code out there:
• Want to understand them
• Want to port them automatically to safer languages

Informal definition of C++: pointers and tables (Stroustrup)
Challenge: abstract formal model

– p.4



Multiple inheritance

Left Right

Bot
�

�
�

�
�

@
@

@
@

@

Top
�

�
�

�
�

@
@

@
@

@

1 or 2 instances of Top in Bot?

– p.5



Shared inheritance

window

window with
border

window with
menu

window with
border & menu

– p.6



Repeated inheritance

Motivation:

Modelling?
Efficiency?

– p.7



Multiple inheritance in C++

C++ class object
keyword diagram layout

shared: virtual

A
···
·

B
A
B

�

repeated:

A

B
A
B

– p.8



The shared diamond

L R

B
�

�
�

�

@
@

@
@

T
·················

·················

T

R

L

B

��

Class diagram Object layout

– p.9



The repeated diamond

L R

B
�

�
�

�

@
@

@
@

T
�

�
�

�

@
@

@
@

T

R

T

L

B

Class diagram Object layout

– p.10



Alternative Java

Multiple inheritance only for interfaces

– p.11



Outline

• Multiple inheritance in C++
• A formal model of subobjects
• Examples
• Semantics and type system

– p.12



Formal model

The Rossie-Friedman model of subobjects
c©1995

– p.13



Paths

Identify (nested) subobjects by access path

T

R

T

L

B [B]

[B,L]

[B,L,T]

[B,R]

[B,R,T] T

R

L

B

66

[B]

[B,L]

[B,R]

[T]

– p.14



Unfolding repeated inheritance

T

L R

B
�

��
Z

ZZ

�
��

Z
ZZ

[B,L,T][B,R,T]

[B,L] [B,R]

[B]
�

��
Z

ZZ

T

L R

B
�

��
Z

ZZ

··········

··········

[T]

[B,L] [B,R]

[B]
�

��
Z

ZZ

�
��

Z
ZZ

Paths are ordered
– p.15



Outline

• Multiple inheritance in C++
• A formal model of subobjects
• Examples
• Semantics and type system

– p.16



Ambiguous?

�
�

��

@
@

@@

x
�

�
��

@
@

@@

t:T;

t := (L) new B;

t.x

Cast adjusts pointer

l:L;

l := new B;

l.x

Assignment performs implicit cast

– p.17



What is called?

f()

�
�

��

@
@

@@

f()
·················

················

l:L;

l := new B;

l.f()

[B,R] “dominates” [T]

– p.18



What is called?

�
�

��

@
@

@@

f()
�

�
��

@
@

@@

l:L;

l := new B;

l.f()

Static type of object may disambiguate method call

– p.19



Legal?

�
�

��

@
@

@@

�
�

��

@
@

@@ b:B; b := new B;

l:L; l := b;

t:T; t := l;

(R)t

Statically allowed. But at run time ...

– p.20



Legal?

�
�

��

@
@

@@

x
�

�
��

@
@

@@

class A: {f():Top = ...}

class B: A {f():Bot = ...}

a:A;

a := new B;

a.f().x

f():Bot is illegal.

– p.21



Semantics

Semantic domains

– p.22



Paths

[C1,. . . ,Cn] is a path from C if

• C1 ≺R . . . ≺R Cn and

• C = C1 or ∃C ′. C �∗ C ′≺S C1.

– p.23



Objects

A B object in the shared diamond:

(B, { ([T ], [x 7→ . . . ]),
([B,L], . . . ),
([B,R], . . . ),
([B], . . . )

}
)

obj = cname × subo set
subo = path × (vname ⇀ val)

Better: obj = cname × (path × vname ⇀ val) – p.24



References

References must point to subobjects

Subobjects are identified by paths

Addr a (Jinja) ; Ref (a, Cs) (CoreC++)

ref (a,Cs) ≡ Val(Ref (a,Cs))

– p.25



Intuition

If e :: Class C and e ⇒ ref (a,[C1,. . . ,Cn])
then C = Cn

– p.26



Path functions

P ⊢ path C to D via Cs ≡ P ⊢ Cs path from C ∧ last Cs = D

P ⊢ path C to D unique ≡
∃ !Cs. P ⊢ Cs path from C ∧ last Cs = D

Cs @p Cs ′ ≡ if last Cs = hd Cs ′ then Cs @ tl Cs ′ else Cs ′

Example:
In repeated diamond: [B, L] @p [L, T ] = [B, L, T ]
In shared diamond: [B, L] @p [T ] = [T ]

– p.27



Semantics and type system

Assignment

Cast

Field access

Method call

– p.28



Assignment: typing

E V = ⌊T ⌋ P,E ⊢ e :: T ′ P ⊢ T ′≤ T

P,E ⊢ V := e :: T

where
P ⊢ path C to D unique

P ⊢ Class C ≤ Class D

P ⊢ T ≤ T P ⊢ NT ≤ Class C

– p.29



Assignment: semantics

P,E ⊢ 〈e,s0〉 ⇒ 〈Val v ,(h, l)〉 E V = ⌊T ⌋

P ⊢ T casts v to v ′ l ′ = l(V 7→ v ′)

P,E ⊢ 〈V := e,s0〉 ⇒ 〈Val v ′,(h, l ′)〉

Examples:

P ⊢ Integer casts v to v

P ⊢ Class T casts Ref (b, [B, R]) to Ref (b, [B, R, T ])
(repeated diamond)

– p.30



Assignment: casting

P ⊢ path last Cs to C via Cs ′

P ⊢ Class C casts Ref (a, Cs) to Ref (a, Cs @p Cs ′)

∀C. T 6= Class C

P ⊢ T casts v to v

P ⊢ Class C casts Null to Null

– p.31



Semantics and type system

Assignment

Cast

Field access

Method call

– p.32



Three casts!

• C-style cast - unsafe
• Static cast - unsafe
• Dynamic cast - safe but complicated

– p.33



Dynamic cast: typing

P,E ⊢ e :: Class D is-class P C

P,E ⊢ dyn cast C e :: Class C

Why potentially ok even if neither C �∗ D nor D �∗ C?

– p.34



Dynamic up cast

Up cast extends path

shared diamond repeated diamond

dyn cast T (new B) ⇒ ref (b, [T ]) ⇒ null

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉

P ⊢ path last Cs to C unique

P ⊢ path last Cs to C via Cs ′

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @p Cs ′),s1〉

– p.35



Dynamic down cast (repeated)

Down cast shortens path

dyn cast R (ref (b, [B, R, T ])) ⇒ ref (b, [B, R])

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs @ [C] @ Cs ′),s1〉

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @ [C]),s1〉

– p.36



Dynamic down cast (shared)

Wanted:

dyn cast R (ref (b, [T ])) ⇒ ref (b, [B, R])

Need to consult dynamic class of object!

– p.37



Dynamic cross cast

In an all-shared diamond:

dyn cast R (ref (b, [L])) ⇒ ref (b, [R])

Need to consult dynamic class of object!

– p.38



Dynamic cast (general)

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),(h, l)〉

h a = ⌊(D, S)⌋

P ⊢ path D to C via Cs ′ P ⊢ path D to C unique

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs ′),(h, l)〉

– p.39



All 3 rules are required

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),(h, l)〉 h a = ⌊(D, S)⌋

P ⊢ path D to C via Cs ′ P ⊢ path D to C unique

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs ′),(h, l)〉

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉

P ⊢ path last Cs to C unique

P ⊢ path last Cs to C via Cs ′

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @p Cs ′),s1〉

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs @ [C] @ Cs ′),s1〉

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @ [C]),s1〉
– p.40



If all else fails

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),(h, l)〉

h a = ⌊(D, S)⌋ ¬ P ⊢ path D to C unique

¬ P ⊢ path last Cs to C unique C /∈ set Cs

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈null ,(h, l)〉

– p.41



Type system and semantics

Assignment

Cast

Field access

Method call

– p.42



Field access: syntax

e.F{Cs}

Cs is path from static class of e to class declaring F

– p.43



Typing examples

�
�

��

@
@

@@

x
·················

·················

�
�

��

@
@

@@

x
�

�
��

@
@

@@

new B.x{[T ]} legal new B.x{[_]} illegal

– p.44



Field access: typing

P,E ⊢ e :: Class C P ⊢ C has least F : T via Cs

P,E ⊢ e.F{Cs} :: T

• Path Cs leads from C to unique lowest declaration of F.

– p.45



Field access: semantics

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs ′),(h, l)〉

h a = ⌊(D, S)⌋

(Cs ′ @p Cs, fs) ∈ S

fs F = ⌊v⌋

P,E ⊢ 〈e.F{Cs},s0〉 ⇒ 〈Val v ,(h, l)〉

– p.46



Semantics and type system

Assignment

Cast

Field access

Method call

– p.47



Method call: typing

P,E ⊢ e :: Class C

P ⊢ C has least M = (Ts, T , _, _) via _

P,E ⊢ es [::] Ts ′ P ⊢ Ts ′ [≤] Ts

P,E ⊢ e.M(es) :: T

• Must have unique lowest definition of M

– p.48



Method call: semantics

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉

P,E ⊢ 〈ps,s1〉 [⇒] 〈map Val vs,(h2, l2)〉

h2 a = ⌊(C, _)⌋

P ⊢ last Cs has least M = (Ts ′, T ′, pns ′, body ′) via Ds

P ⊢ (C, Cs @p Ds) selects M = (Ts, T , pns, body) via Cs ′

...

P,E ⊢ 〈e.M(ps),s0〉 ⇒ 〈e ′,(h3, l2)〉

– p.49



Method selection

P ⊢ C has least M = mthd via Cs ′

P ⊢ (C, Cs) selects M = mthd via Cs ′

∀mthd Cs ′. ¬ P ⊢ C has least M = mthd via Cs ′

P ⊢ (C, Cs) has overrider M = mthd via Cs ′

P ⊢ (C, Cs) selects M = mthd via Cs ′

– p.50



Method overriding: unique covariance

Wellformedness:

if M : Ts → Class A in C
and M : Us → Class B in D
and P ⊢ D �∗ C
then P ⊢ path B to A unique

– p.51



Type Safety

CoreC++ is type safe

Proof similar to Jinja

– p.52


	Tit {What is CoreC++?}
	Tit {Overview}
	Tit {Why multiple inheritance and C++?}
	Tit {Multiple inheritance}
	Tit {Shared inheritance}
	Tit {Repeated inheritance}
	Tit {Multiple inheritance in C++}
	Tit {The shared diamond}
	Tit {The repeated diamond}
	Tit {Alternative Java}
	Tit {Outline}
	Tit {Formal model}
	Tit {Paths}
	Tit {Unfolding repeated inheritance}
	Tit {Outline}
	Tit {Ambiguous?}
	Tit {What is called?}
	Tit {What is called?}
	Tit {Legal?}
	Tit {Legal?}
	Tit {Semantics}
	Tit {Paths}
	Tit {Objects}
	Tit {References}
	Tit {Intuition}
	Tit {Path functions}
	Tit {Semantics and type system}
	Tit {Assignment: typing}
	Tit {Assignment: semantics}
	Tit {Assignment: casting}
	Tit {Semantics and type system}
	Tit {Three casts!}
	Tit {Dynamic cast: typing}
	Tit {Dynamic up cast}
	Tit {Dynamic down cast (repeated)}
	Tit {Dynamic down cast (shared)}
	Tit {Dynamic cross cast}
	Tit {Dynamic cast (general)}
	Tit {All 3 rules are required}
	Tit {If all else fails}
	Tit {Type system and semantics}
	Tit {Field access: syntax}
	Tit {Typing examples}
	Tit {Field access: typing}
	Tit {Field access: semantics}
	Tit {Semantics and type system}
	Tit {Method call: typing}
	Tit {Method call: semantics}
	Tit {Method selection}
	Tit {Method overriding: unique covariance}
	Tit {Type Safety}

