CoreC++
Multiple Inheritance in C++

Tobias Nipkow

Technische Universitat Minchen

-p.1

What i1s CoreC++?

Roughly speaking:
Jinja ¢ CoreC++ c C++

Intention:

CoreC++ models multiple inheritance exactly as in C++.

Warning:

CoreC++ lacks many C++ features, incl. overloading.

-p.2

Overview

Multiple inheritance in C++
A formal model of subobjects
Examples

Semantics and type system

-p.3

Why multiple inheritance and C++7?

Not pretty but millions of lines of code out there:
Want to understand them
Want to port them automatically to safer languages

Informal definition of C++: pointers and tables (Stroustrup)
Challenge: abstract formal model

—-p.4

Multiple inheritance

Top

AN

Left Right

NS

Bot

1 or 2 instances of Top in Bot?

window with
border

Shared inheritance

window

window with
menu

window with
border & menu

—p.6

Repeated inheritance

Motivation:

Modelling?
Efficiency?

Multiple inheritance in C++

C++ class object
keyword diagram layout
A
: A k-
shared: virtual B B
A
A
repeated: B B

The shared diamond

T
- /R
B

Class diagram

—]
AX

L

B

Object layout

-p.9

The repeated diamond

VAN
/

Class diagram Object layout

Alternative Java

Multiple inheritance only for interfaces

-p.11

Qutline

Multiple inheritance in C++
A formal model of subobjects
Examples

Semantics and type system

-p.12

Formal model

The Rossie-Friedman model of subobjects
©1995

Paths

ldentify (nested) subobjects by access path

T [B, R T] T T
R [B, R] - B R
T [B,L,T] '
L [B L] L [B, L
B [B] B[]

Unfolding repeated inheritance

T [B, L, TI[B R T]
L R [B, L] [B,‘ R]
\/
B [B]
T [T]
L R [B, L] [B R
\/
B [B]

Paths are ordered

Qutline

Multiple inheritance in C++
A formal model of subobjects
Examples

Semantics and type system

-p.16

AN

Ambiguous?

t: T;
t := (L) new B;
t.X
Cast adjusts pointer

o
. = new B;
. X
Assignment performs implicit cast

—-p.17

What i1s called?

E3.

)

AT

1)

[B, R] “dominates” [T]

What 1s called?
L
\/ = new B;

1)

Static type of object may disambiguate method call

Legal?

\ b := new B:;

> tor= 10

B
L: | := b;
T
R)

N

Statically allowed. But at run time ...

-p.20

Legal?

class A {f(): Top = ...}
\ class B: A {f():Bot = ...}

a. A
a .= new B;

a. f().x

f():Bot Isillegal.

Semantics

Semantic domains

—p.22

Paths

C4,...,C,] is apath from C if
Ci<p... <pC, and
C=C;ordC".C=<*C'=<4C,;.

Objects

A B object in the shared diamond:

(B, 1 (T}, [XH---]),
(B.L), -..),
(B.;R], -..),
(Bl ...)

;

)

ob] = cname x subo set
subo = path x (vname — val)

Better: obj = cname x (path x vhame — val)

References

References must point to subobjects
Subobjects are identified by paths

Addr a (Jinja) ~ Ref (a, Cs) (CoreC++)

ref(a,Cs) = Val(Ref(a,Cs))

Intuition

If e::ClassC and e = ref(a,[C4,...,C,])
then C =C,,

Path functions

P+ pathCtoDviaCs =P F Cs path from C Alast Cs =D

P F path C to D unique =
3!1Cs. P I Cs path from C A last Cs = D

Cs @, Cs’=iflast Cs = hd Cs’then Cs @ tl Cs’else Cs’

Example:
In repeated diamond: [B, L] @, |

L, B,L,T]
In shared diamond: [B, L] @ [T]

T]

I_I

=

| |

—p.27

Semantics and type system

Assignment
Cast
Field access

Method call

Assignment: typing

EV =|T|] PEFe:T’ PFT'<T
PEFV.=e:T

where
P F path C to D unique

PFClass C < Class D
PFEFT <T PFNT <Class C

Assignment: semantics

P.E I (e,sy) = (Val v, (h 1)) EV =|T|
P T castsVioV' I"=1(V — Vv’

PEF(V:=esy) = (Val v'(h 1)

Examples:
P - Integer casts vV to Vv

P - Class T casts Ref (b, [B, R]) to Ref (b, [B, R, T])
(repeated diamond)

Assignment: casting

P | path last Cs to C via Cs’

P I Class C casts Ref (a, Cs) to Ref (a, Cs @, Cs’)

VC. T # Class C

P T castsVtoV

P I Class C casts Null to Null

Semantics and type system

Assignment
Cast
Field access

Method call

-p.32

Three casts!

» C-style cast - unsafe
» Static cast - unsafe
» Dynamic cast - safe but complicated

-p.33

Dynamic cast: typing

PEFe:Class D Is-class P C
P EFdyncast Ce:: ClassC

Why potentially ok even if neither C <* D norD <X* C?

Dynamic up cast

Up cast extends path

shared diamond repeated diamond

dyncast T (newB) =ref (b, |T]) = null

P.EF (e5sqy = (ref (a, Cs),s1)
P I path last Cs to C unique
P | path last Cs to C via Cs’

P.E - (dyn cast Ce,sy) = (ref (a,Cs @, Cs’),sy)

Dynamic down cast (repeated)

Down cast shortens path

dyn_cast R (ref (b, [B,R, T])) = ref (b, B, R])

PEF (esq) = (ref (a,Cs @ [C] @Cs'),s;)

P.E F (dyn cast Ce,sy) = (ref (a,Cs @ [C]),s1)

Dynamic down cast (shared)

Wanted:
dyn_cast R (ref (b, [T])) = ref (b, |B, R])

Need to consult dynamic class of object!

Dynamic cross cast

In an all-shared diamond:
dyn_cast R (ref (b, [L])) = ref (b, [R])

Need to consult dynamic class of object!

Dynamic cast (general)

P.EF (e5sy) = (ref (a, Cs),(h,I))
ha=|[(D,S)
P |- path D to C via Cs’ P I path D to C unique

P.E I (dyn_cast Ce,sg) = (ref (a, Cs’),(h,I))

All 3 rules are required

P.E I (esso) = (ref (a, Cs),(h, 1)) ha=|[(D,S)]
P I path D to C via Cs’ P I path D to C unique

P.E F (dyn_cast Ce,sy) = (ref (a, Cs’),(h,I))

P.E I (e,;sp) = (ref (a, Cs),s)
P I path last Cs to C unique
P + path last Cs to C via Cs’

P.E - (dyn cast Ce,sy) = (ref (a,Cs @, Cs’),sy)

PEF (esq) = (ref (a,Cs @ [C] @ Cs'),sq)

P.E F (dyn cast Ce,sy) = (ref (a,Cs @ [C]),s1)

If all else falls

P.EF (e;sy) = (ref (a, Cs),(h,I))
ha=|(D,S)] — P F path D to C unique
— P I path last Cs to C unique C ¢ set Cs

P.E - (dyn cast Ce,sg) = (null,(h, 1))

Type system and semantics

Assignment
Cast
Field access

Method call

Field access: syntax

e.F{Cs}

Cs is path from static class of e to class declaring F

NS NS

newB.x{[T|} legal newB.x{[_|} illegal

Field access: typing

PEFe:Class C P Chasleast F : T via Cs

PEFeF{Cs}: T

Path Cs leads from C to unique lowest declaration of F.

Field access: semantics

PEF (esy = (ref (a, Cs’),(h, 1))
ha=|[(D,S)]
(Cs'@, Cs,fs) €S
fsF=|v]

P.EF (e.F{Cs},sq) = (Val v,(h,I))

Semantics and type system

Assignment
Cast
Field access

Method call

Method call: typing

PEFe:Class C
P Chasleast M = (Ts, T, ,)via _
PEFres][:]Ts' PHTs'[<]Ts
PEFeM(es):T

Must have unique lowest definition of M

Method call: semantics

P.EF (e5sy = (ref (a, Cs),s1)
P.E F (ps,s1) [=] (map Val vs,(hs, |5))
hya=|[(C,_)
P I last Cs has least M = (Ts’, T’ pns’, body) via Ds
P+ (C,Cs @,Ds) selects M = (Ts, T, pns, body) via Cs’

P.E I (e.M(ps),so) = (€/,(hs, 1))

Method selection

D | C has least M = mthd via Cs’

PF (C, Cs) selects M = mthd via Cs’

vVmthd Cs’. = P I C has least M = mthd via Cs'’
P I (C, Cs) has overrider M = mthd via Cs’

P I (C, Cs) selects M = mthd via Cs’

Method overriding: unigue covariance

Wellformedness:

if M:Ts — Class AinC
and M : Us — Class B inD
and PD <*C

then P - path B to A unique

Type Safety

CoreC++ is type safe

Proof similar to Jinja

	Tit {What is CoreC++?}
	Tit {Overview}
	Tit {Why multiple inheritance and C++?}
	Tit {Multiple inheritance}
	Tit {Shared inheritance}
	Tit {Repeated inheritance}
	Tit {Multiple inheritance in C++}
	Tit {The shared diamond}
	Tit {The repeated diamond}
	Tit {Alternative Java}
	Tit {Outline}
	Tit {Formal model}
	Tit {Paths}
	Tit {Unfolding repeated inheritance}
	Tit {Outline}
	Tit {Ambiguous?}
	Tit {What is called?}
	Tit {What is called?}
	Tit {Legal?}
	Tit {Legal?}
	Tit {Semantics}
	Tit {Paths}
	Tit {Objects}
	Tit {References}
	Tit {Intuition}
	Tit {Path functions}
	Tit {Semantics and type system}
	Tit {Assignment: typing}
	Tit {Assignment: semantics}
	Tit {Assignment: casting}
	Tit {Semantics and type system}
	Tit {Three casts!}
	Tit {Dynamic cast: typing}
	Tit {Dynamic up cast}
	Tit {Dynamic down cast (repeated)}
	Tit {Dynamic down cast (shared)}
	Tit {Dynamic cross cast}
	Tit {Dynamic cast (general)}
	Tit {All 3 rules are required}
	Tit {If all else fails}
	Tit {Type system and semantics}
	Tit {Field access: syntax}
	Tit {Typing examples}
	Tit {Field access: typing}
	Tit {Field access: semantics}
	Tit {Semantics and type system}
	Tit {Method call: typing}
	Tit {Method call: semantics}
	Tit {Method selection}
	Tit {Method overriding: unique covariance}
	Tit {Type Safety}

