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What is CoreC++?

Roughly speaking:

Jinja ⊂ CoreC++ ⊂ C++

Intention:

CoreC++ models multiple inheritance exactly as in C++.

Warning:

CoreC++ lacks many C++ features, incl. overloading.
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Overview

• Multiple inheritance in C++
• A formal model of subobjects
• Examples
• Semantics and type system
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Why multiple inheritance and C++?

Not pretty but millions of lines of code out there:
• Want to understand them
• Want to port them automatically to safer languages

Informal definition of C++: pointers and tables (Stroustrup)
Challenge: abstract formal model
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Multiple inheritance
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Shared inheritance
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Repeated inheritance

Motivation:

Modelling?
Efficiency?
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Multiple inheritance in C++

C++ class object
keyword diagram layout
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The shared diamond
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The repeated diamond
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Alternative Java

Multiple inheritance only for interfaces
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Outline

• Multiple inheritance in C++
• A formal model of subobjects
• Examples
• Semantics and type system
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Formal model

The Rossie-Friedman model of subobjects
c©1995
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Paths

Identify (nested) subobjects by access path
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Unfolding repeated inheritance
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Outline

• Multiple inheritance in C++
• A formal model of subobjects
• Examples
• Semantics and type system
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Ambiguous?
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t:T;

t := (L) new B;

t.x

Cast adjusts pointer

l:L;

l := new B;

l.x

Assignment performs implicit cast
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What is called?

f()
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l:L;

l := new B;

l.f()

[B,R] “dominates” [T]
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What is called?
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l:L;

l := new B;

l.f()

Static type of object may disambiguate method call
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Legal?
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@@ b:B; b := new B;

l:L; l := b;

t:T; t := l;

(R)t

Statically allowed. But at run time ...
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Legal?
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class A: {f():Top = ...}

class B: A {f():Bot = ...}

a:A;

a := new B;

a.f().x

f():Bot is illegal.
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Semantics

Semantic domains
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Paths

[C1,. . . ,Cn] is a path from C if

• C1 ≺R . . . ≺R Cn and

• C = C1 or ∃C ′. C �∗ C ′≺S C1.

– p.23



Objects

A B object in the shared diamond:

(B, { ([T ], [x 7→ . . . ]),
([B,L], . . . ),
([B,R], . . . ),
([B], . . . )

}
)

obj = cname × subo set
subo = path × (vname ⇀ val)

Better: obj = cname × (path × vname ⇀ val) – p.24



References

References must point to subobjects

Subobjects are identified by paths

Addr a (Jinja) ; Ref (a, Cs) (CoreC++)

ref (a,Cs) ≡ Val(Ref (a,Cs))
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Intuition

If e :: Class C and e ⇒ ref (a,[C1,. . . ,Cn])
then C = Cn
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Path functions

P ⊢ path C to D via Cs ≡ P ⊢ Cs path from C ∧ last Cs = D

P ⊢ path C to D unique ≡
∃ !Cs. P ⊢ Cs path from C ∧ last Cs = D

Cs @p Cs ′ ≡ if last Cs = hd Cs ′ then Cs @ tl Cs ′ else Cs ′

Example:
In repeated diamond: [B, L] @p [L, T ] = [B, L, T ]
In shared diamond: [B, L] @p [T ] = [T ]
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Semantics and type system

Assignment

Cast

Field access

Method call
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Assignment: typing

E V = ⌊T ⌋ P,E ⊢ e :: T ′ P ⊢ T ′≤ T

P,E ⊢ V := e :: T

where
P ⊢ path C to D unique

P ⊢ Class C ≤ Class D

P ⊢ T ≤ T P ⊢ NT ≤ Class C
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Assignment: semantics

P,E ⊢ 〈e,s0〉 ⇒ 〈Val v ,(h, l)〉 E V = ⌊T ⌋

P ⊢ T casts v to v ′ l ′ = l(V 7→ v ′)

P,E ⊢ 〈V := e,s0〉 ⇒ 〈Val v ′,(h, l ′)〉

Examples:

P ⊢ Integer casts v to v

P ⊢ Class T casts Ref (b, [B, R]) to Ref (b, [B, R, T ])
(repeated diamond)
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Assignment: casting

P ⊢ path last Cs to C via Cs ′

P ⊢ Class C casts Ref (a, Cs) to Ref (a, Cs @p Cs ′)

∀C. T 6= Class C

P ⊢ T casts v to v

P ⊢ Class C casts Null to Null
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Semantics and type system

Assignment

Cast

Field access

Method call
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Three casts!

• C-style cast - unsafe
• Static cast - unsafe
• Dynamic cast - safe but complicated
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Dynamic cast: typing

P,E ⊢ e :: Class D is-class P C

P,E ⊢ dyn cast C e :: Class C

Why potentially ok even if neither C �∗ D nor D �∗ C?
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Dynamic up cast

Up cast extends path

shared diamond repeated diamond

dyn cast T (new B) ⇒ ref (b, [T ]) ⇒ null

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉

P ⊢ path last Cs to C unique

P ⊢ path last Cs to C via Cs ′

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @p Cs ′),s1〉
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Dynamic down cast (repeated)

Down cast shortens path

dyn cast R (ref (b, [B, R, T ])) ⇒ ref (b, [B, R])

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs @ [C] @ Cs ′),s1〉

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @ [C]),s1〉
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Dynamic down cast (shared)

Wanted:

dyn cast R (ref (b, [T ])) ⇒ ref (b, [B, R])

Need to consult dynamic class of object!
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Dynamic cross cast

In an all-shared diamond:

dyn cast R (ref (b, [L])) ⇒ ref (b, [R])

Need to consult dynamic class of object!
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Dynamic cast (general)

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),(h, l)〉

h a = ⌊(D, S)⌋

P ⊢ path D to C via Cs ′ P ⊢ path D to C unique

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs ′),(h, l)〉
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All 3 rules are required

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),(h, l)〉 h a = ⌊(D, S)⌋

P ⊢ path D to C via Cs ′ P ⊢ path D to C unique

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs ′),(h, l)〉

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉

P ⊢ path last Cs to C unique

P ⊢ path last Cs to C via Cs ′

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @p Cs ′),s1〉

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs @ [C] @ Cs ′),s1〉

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈ref (a, Cs @ [C]),s1〉
– p.40



If all else fails

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),(h, l)〉

h a = ⌊(D, S)⌋ ¬ P ⊢ path D to C unique

¬ P ⊢ path last Cs to C unique C /∈ set Cs

P,E ⊢ 〈dyn cast C e,s0〉 ⇒ 〈null ,(h, l)〉
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Type system and semantics

Assignment

Cast

Field access

Method call
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Field access: syntax

e.F{Cs}

Cs is path from static class of e to class declaring F
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Typing examples
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new B.x{[T ]} legal new B.x{[_]} illegal
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Field access: typing

P,E ⊢ e :: Class C P ⊢ C has least F : T via Cs

P,E ⊢ e.F{Cs} :: T

• Path Cs leads from C to unique lowest declaration of F.
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Field access: semantics

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs ′),(h, l)〉

h a = ⌊(D, S)⌋

(Cs ′ @p Cs, fs) ∈ S

fs F = ⌊v⌋

P,E ⊢ 〈e.F{Cs},s0〉 ⇒ 〈Val v ,(h, l)〉
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Semantics and type system

Assignment

Cast

Field access

Method call
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Method call: typing

P,E ⊢ e :: Class C

P ⊢ C has least M = (Ts, T , _, _) via _

P,E ⊢ es [::] Ts ′ P ⊢ Ts ′ [≤] Ts

P,E ⊢ e.M(es) :: T

• Must have unique lowest definition of M
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Method call: semantics

P,E ⊢ 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉

P,E ⊢ 〈ps,s1〉 [⇒] 〈map Val vs,(h2, l2)〉

h2 a = ⌊(C, _)⌋

P ⊢ last Cs has least M = (Ts ′, T ′, pns ′, body ′) via Ds

P ⊢ (C, Cs @p Ds) selects M = (Ts, T , pns, body) via Cs ′

...

P,E ⊢ 〈e.M(ps),s0〉 ⇒ 〈e ′,(h3, l2)〉
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Method selection

P ⊢ C has least M = mthd via Cs ′

P ⊢ (C, Cs) selects M = mthd via Cs ′

∀mthd Cs ′. ¬ P ⊢ C has least M = mthd via Cs ′

P ⊢ (C, Cs) has overrider M = mthd via Cs ′

P ⊢ (C, Cs) selects M = mthd via Cs ′
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Method overriding: unique covariance

Wellformedness:

if M : Ts → Class A in C
and M : Us → Class B in D
and P ⊢ D �∗ C
then P ⊢ path B to A unique
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Type Safety

CoreC++ is type safe

Proof similar to Jinja
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