Semantics of Programming Languages

Exercise Sheet 2

Homework 2 Power function and binary trees
Submission until Wednesday, November 10, 2010, 12:00 (noon).
Define the recursive function pow which computes, for two natural numbers n and m, the value n^{m}. You may use the predefined natural number operators + and $*$.

Prove the following property of pow. You may need to prove auxiliary lemmas.
theorem "pow $x(m * n)=$ pow (pow $x m$) n "
Define a datatype tree of plain binary trees, that is, binary trees which do not store any information, neither in leafs nor in inner nodes. Moreover, write a function count which returns the total number all nodes (i.e., of leafs and inner nodes) of such binary trees.

Consider the following recursive function:
fun explode :: "nat \Rightarrow tree \Rightarrow tree" where
"explode $0 t=t$ "
"explode (Suc n) $t=$ explode $n($ Node $t t) "$
Experiment how explode influences the size of binary trees and find an equation expressing the relation between the count of a tree t and the count of the tree after exploding it by an arbitrary number n. Hint: you may re-use the previously defined function pow. Prove that your equation is correct.

