
Technische Universität München WS 2010/11
Institut für Informatik 8. 11. 2010

Prof. Tobias Nipkow, Ph.D.
Sascha Böhme, Alexander Krauss

Semantics of Programming Languages
Exercise Sheet 3

Note: The following exercises build on the theories about arithmetic and boolean ex-
pressions, which you can download from the website. You need the theories AExp.thy
and BExp.thy. Import theory BExp in your theory header. AExp is then pulled in
automatically.

Exercise 3.1 Boolean If expressions

We consider an alternative definition of boolean expressions, which feature a conditional
construct:

datatype ifexp = B bool | If ifexp ifexp ifexp | Less aexp aexp

(a) Define a function ifval analogous to bval, which evaluates ifexp expressions.

(b) Define a function translate, which translates ifexps to bexps. State and prove a
lemma showing that the translation is correct.

Exercise 3.2 More Arithmetic Constructs

Extend aexp with further arithmetic operators of your choice. Extend aval and asimp
accordingly.

Homework 3 Let expressions

Submission until Wednesday, November 17, 2010, 12:00 (noon).
The following type adds a Let construct to arithmetic expressions:

datatype lexp = N nat | V name | Plus lexp lexp | Let name lexp lexp

The new Let constructor acts like a local variable binding: When evaluating Let x e1
e2, we first evaluate e1, bind the resulting value to the variable x and then evaluate e2
in the new state.

(a) Define a function lval, which evaluates lexp expressions. Note that you can use the
notation f (x := v) to express function update. It is defined as follows:

1

f (a := b) = (λx . if x = a then b else f x)

(b) Define a function that transforms such an expression into an equivalent one that
does not contain Let. Prove that your transformation is correct.

(c) Define a function that eliminates occurrences of Let x e1 e2 that are never used,
i.e., where x does not occur free in e2. An occurrence of a variable in an expression
is called free, if it is not in the body of a Let expression that binds the same variable.
E.g., the variable x occurs free in Plus (V x) (V x), but not in Let x (N 0) (Plus
(V x) (V x)). Prove the correctness of your transformation.

Some Hints:

• When different datatypes have a constructor with the same name, they can unam-
biguously be referred to using their qualified name, e.g., aexp.Plus vs. lexp.Plus.

• When you feel that the proof should be trivial to finish, you can alse try the
sledgehammer command (from the Isabelle→Commands menu). It invokes an
extensive proof search that includes more library lemmas. Since we haven’t yet
learned the syntax to do manual proofs, this may be useful for glueing facts together
automatically. However, it will not help when you need a non-trivial lemma first.

2

