Semantics of Programming Languages

Exercise Sheet 5

This exercise builds on theory Big_Step.

To save some typing, download the theory Ex05_Template and fill in the gaps.

Exercise 5.1 Program equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

- (a) IF And b1 b2 THEN c1 ELSE c2 ~ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2
- (b) WHILE And b1 b2 DO $c \sim$ WHILE b1 DO WHILE b2 DO c
- (c) WHILE And b1 b2 DO $c \sim$ WHILE b1 DO c; WHILE And b1 b2 DO c
- (d) WHILE Or b1 b2 DO $c \sim$ WHILE Or b1 b2 DO c; WHILE b1 DO c

Hint: Use the following definition for Or:

definition $Or :: "bexp \Rightarrow bexp"$ where " $Or \ b1 \ b2 = Not \ (And \ (Not \ b1) \ (Not \ b2))$ "

Exercise 5.2 Alternative loop constructs

Many programming languages provide different loop constructs beyond our while loops, e.g., do-while and repeat-until.

(a) Prove the following congruence rules, which make it easier to prove program equivalences later:

lemma Semi_cong: "[[$c1 \sim c1'$; $c2 \sim c2'$]] $\Longrightarrow c1$; $c2 \sim c1'$; c2'"

lemma If_cong: " $[[\land s. bval b s = bval b' s; c1 \sim c1'; c2 \sim c2']$ \implies IF b THEN c1 ELSE c2 ~ IF b' THEN c1' ELSE c2'"

lemma While_cong: "[[$\land s.$ bval $b \ s = bval \ b' \ s; \ c \sim c'$]] \implies WHILE $b \ DO \ c \sim$ WHILE $b' \ DO \ c'''$

(b) Define a new loop construct DO c WHILE b in terms of the language com, where the condition is first checked after execution of the loop body. Define a translation which rewrites a com program into a program without while loops. Prove that your translation preserves equivalence.

Homework 5 Occurrence of variables and REPEAT _ UNTIL _

Submission until Wednesday, December 1, 2010, 12:00 (noon).

- (a) Define a predicate *assigned* which tests if a program contains an assignment command for a given variable.
- (b) Prove that if a program contains no assignment for a variable, then that variable is never modified by the program.
- (c) Give a counterexample for the reverse implication.
- (d) As in Exercise 5.2, define a new loop construct $REPEAT \ c \ UNTIL \ b$, where the loop is executed until b becomes true, but at least once. Define a program translation that expresses all WHILE loops in terms of REPEAT. Prove that it preserves equivalence.