
Technische Universität München WS 2010/11
Institut für Informatik 29. 11. 2010

Prof. Tobias Nipkow, Ph.D.
Sascha Böhme, Alexander Krauss

Semantics of Programming Languages
Exercise Sheet 6

This exercise builds on theory Small Step.
To save some typing, download the theory Ex06 Template and fill in the gaps.

Exercise 6.1 Small step equivalence

We define an equivalence relation ≈ on programs that uses the small-step semantics.
Unlike with ∼, we also demand that the programs take the same number of steps.
The following relation is the n-steps reduction relation:

inductive
n steps :: “com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool”
(“ →ˆ ” [60 ,1000 ,60 ]999 )

where
zero steps: “cs →ˆ0 cs” |
one step: “cs → cs ′ =⇒ cs ′→ˆn cs ′′ =⇒ cs →ˆ(Suc n) cs ′′”

Prove the following lemmas:

lemma small steps n: “cs →∗ cs ′ =⇒ (∃n. cs →ˆn cs ′)”
lemma n small steps: “cs →ˆn cs ′ =⇒ cs →∗ cs ′”

The equivalence relation is defined as follows:

definition
small step equiv :: “com ⇒ com ⇒ bool” (infix “≈” 50 ) where
“c ≈ c ′ == (∀ s t n. (c,s) →ˆn (SKIP , t) = (c ′, s) →ˆn (SKIP , t))”

Prove the following lemma:

lemma small eqv implies big eqv : “c ≈ c ′ =⇒ c ∼ c ′”

How about the reverse implication?

1



Homework 6

Submission until Wednesday, December 8, 2010, 12:00 (noon).
In this execercise we extend our language with nondeterminism. We want to include
a command c1 OR c2, which expresses the nondeterministic choice between two com-
mands. That is, when executing c1 OR c2 either c1 or c2 may be executed, and it is not
specified which one.

(a) Modify the datatype com to include a new constructor Or.

(b) Adapt the big step semantics to include rules for the new construct.

(c) Prove that c1 OR c2 ∼ c2 OR c1.

(d) Adapt the small step semantics, and the equivalence proof of big and small step
semantics.

Note: It is easiest if you take the existing theories and modify them. Please mark the
places where you did any modification, such that they can be immediately recognized.

2


