
Technische Universität München WS 2010/11
Institut für Informatik 13. 12. 2010

Prof. Tobias Nipkow, Ph.D.
Sascha Böhme, Alexander Krauss

Semantics of Programming Languages
Exercise Sheet 8

Exercise 8.1 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

(a) Modify, in the theory Types, the inductive definitions of taval and tbval such that
implicit coercions are applied where necessary.

(b) Extend the datatype com by a loop construct DO a TIMES c which executes
the command c exactly a times, where a is an arbitrary arithmetic expression of
integer type.

(c) Adapt all proofs in the theory Types accordingly.

Hint: Isabelle already provides the coercion functions nat, int, and real.

Homework 8 Type Inference

Submission until Wednesday, January 12, 2011, 12:00 (noon).
This is a programming exercise. You are not asked to prove anything. Use the template
file Type Inference Template.thy

You will implement type inference for our simple type system. A type inference is an
algorithm that takes a program c and computes an environment Γ such that Γ ` c. In
general there are multiple type environments for a program. For example the program
x ::= V y can be typed in any Γ where Γ x = Γ y.
To express multiple solutions, we introduce type variables. There is one type variable
TVar x for every program variable x, which stands for “the type assigned to program
variable x”. For simplicity the type tvar also includes constants:

datatype tvar = TVar name | Type ty

fun type of :: “tyenv ⇒ tvar ⇒ ty”
where

“type of Γ (TVar v) = Γ(v)”
| “type of Γ (Type t) = t”

1

Type inference is best implemented in two parts. The first part traverses the program and
collects constraints that must hold to make the program type correct. Our constraints
are simply equalities between type variables, modelled as pairs:

types
constraint = “tvar × tvar”
constraints = “constraint list”

fun constraint holds :: “tyenv ⇒ constraint ⇒ bool” (infix “ |=” 50)
where “ Γ |= (v , v ′) ←→ type of Γ v = type of Γ v ′”

(a) Implement a function ccollect :: com ⇒ constraints that collects constraints from
a program. Your function should have the following property, which you can test
using the quickcheck counterexample generator.

lemma ccollect sound and complete:
“ Γ ` c ←→ (∀C ∈ set (ccollect c). Γ |= C)”

In the second part we must solve the constraints. Instead of a set of solutions (which
could become very large) we compute a “most general typing” of which every valid typing
will be an instance. It is expressed as an association list M :: (name × tvar) list that
associates each variable occurring in the program to a type or type variable.
The following function instantiates a solution to a concrete type environment, given an
instantiation I. Here the predefined map of :: (′a × ′b) list ⇒ ′a ⇒ ′b option implements
the lookup operation in an association list.

definition instantiate :: “ (name ⇒ ty) ⇒ (name × tvar) list ⇒ tyenv”
where

“instantiate I M =
(λx . case map of M x of

None ⇒ I x
| Some (Type T) ⇒ T
| Some (TVar y) ⇒ I y)”

Conversely, the following function checks if a concrete environment Γ is an instance of a
solution:

fun is instance :: “tyenv ⇒ (name × tvar) list ⇒ bool” (infix “<:” 50)
where

“ Γ <: [] ←→ True”
| “ Γ <: ((x ,Type t)#M) ←→ (Γ(x) = t ∧ Γ <: M)”
| “ Γ <: ((x ,TVar y)#M) ←→ (Γ(x) = Γ(y) ∧ Γ <: M)”

(b) Implement a constraint solving algorithm as a function solve :: constraints ⇒
(name × tvar) list ⇒ (name × tvar) list option that refines a (partial) solution
using the given constraints. If a contradiction is detected, the function returns
None.

(c) Combine the parts to a type inference algorithm. Use quickcheck to test the
properties specified in the template file.

2

