
Technische Universität München WS 2010/11
Institut für Informatik 31. 01. 2011

Prof. Tobias Nipkow, Ph.D.
Sascha Böhme, Alexander Krauss

Semantics of Programming Languages
Exercise Sheet 13

For a change, this exercise should be solved on paper only, not using Isabelle.

Exercise 13.1 Procedure Definedness Check

We consider a language with statically scoped procedures but (for simplicity) without
local variables. For this language we can define a small-step semantics that does not
require a special procedure environment. Instead, the context of procedure declara-
tions is managed by gradually transforming the program itself. The rules for the basic
commands remain unchanged:
(x ::= a, s) → (SKIP , s(x := aval a s))

(SKIP ; c2, s) → (c2, s)

(c1, s) → (c1
′, s ′) =⇒ (c1; c2, s) → (c1

′; c2, s ′)

bval b s =⇒ (IF b THEN c1 ELSE c2, s) → (c1, s)

¬ bval b s =⇒ (IF b THEN c1 ELSE c2, s) → (c2, s)

(WHILE b DO c, s) → (IF b THEN c; WHILE b DO c ELSE SKIP , s)

Now, procedure declarations distribute over semicolons, and disappear when they sur-
round a SKIP. Moreover, we may make an arbitrary step under a procedure declaration:
({PROC p = cp;; c1; c2}, s) → ({PROC p = cp;; c1}; {PROC p = cp;; c2}, s)

({PROC p = cp;; SKIP}, s) → (SKIP , s)

(c, s) → (c ′, t) =⇒ ({PROC p = cp;; c}, s) → ({PROC p = cp;; c ′}, t)

(a) Complete the small-step semantics by formulating the missing rules for CALL.

(b) Define a recursive function that checks if a program is well-formed, that is, it
contains no calls to procedures that were not defined.

(c) Prove that the evaluation of a well-formed programm cannot get stuck: If c is
well-formed and (c, s) →∗ (c ′, t) and final (c ′, t) then c ′ = SKIP.

Recall that final cs is defined as ¬ (∃ cs ′. cs → cs ′).

1


