Semantics of

Programming Languages

How to Prove it

Tobias Nipkow

Fakultät für Informatik
TU München
Wintersemester 2010
(1) Introduction
(1) Introduction

Background This Course

Why Semantics?

Without semantics,

we do not really know what our programs mean.
We merely have a good intuition and a warm feeling.
Like the state of mathematics in the 19th century

- before set theory and logic entered the scene.

Intuition is important!

- You need a good intuition to get your work done efficiently.
- To understand the average accounting program, intuition suffices.
- To write a bug-free accounting program may require more than intuition!
- I assume you have the necessary intuition.
- This course is about "beyond intuition".

Intuition is not sufficient!

Writing correct language processors (e.g. compilers, refactoring tools, ...) requires

- a deep understanding of language semantics,
- the ability to reason (= perform proofs) about the language and your processor.

Example:

What does the correctness of a type checker even mean? How is it proved?

Why Semantics??

We have a compiler - that is the ultimate semantics!!

- A compiler gives each individual program a semantics.
- It does not help with reasoning about the PL or individual programs.
- Because compilers are far too complicated.
- They provide the worst possible semantics.
- Moreover: compilers may differ!

The sad facts of life

- Most languages have one or more compilers.
- Most compilers have bugs.
- Few languages have a (separate, abstract) semantics.
- If they do, it will be informal (English).

Bugs

- Google "compiler bug"
- Google "hostile applet"

Early versions of Java had various security holes.
Some of them had to do with an incorrect bytecode verifier.

GI Dissertationspreis 2003:
Gerwin Klein: Verified Java Bytecode Verification

Standard ML (SML)

First real language with a mathematical semantics:
Milner, Tofte, Harper:
The Definition of Standard ML. 1990.

Robin Milner (1934-2010)
 Turing Award 1991.

Main achievements: LCF (theorem proving)
SML (functional programming)
CCS, pi (concurrency)

The sad fact of life

SML semantics hardly used:

- too difficult to read to answer simple questions quickly
- too much detail to allow reliable informal proof
- not processable beyond ATTEX, not even executable

More sad facts of life

- Real programming languages are complex.
- Even if designed by academics, not industry.
- Complex designs are error-prone.
- Informal mathematical proofs of complex designs are also error-prone.

The solution

Machine-checked language semantics and proofs

- Semantics at least type-correct
- Maybe executable
- Proofs machine-checked

The tool:

> Interactive Theorem Prover (ITP)

Interactive Theorem Provers

- You give the structure of the proof
- The ITP checks the correctness of each step
- Can prove hard and huge theorems

Government health warnings:
Time consuming
Potentially addictive
Undermines your naive trust in informal proofs

Terminology

This lecture course:

> Formal $=$ machine-checked
> Verification $=$ formal correctness proof

Traditionally:
Formal $=$ mathematical

Two landmark verifications

C compiler

Competitive with gcc -01

Xavier Leroy
INRIA Paris
using Coq

Operating system microkernel (L4)

Gerwin Klein (\& Co) NICTA Sydney
using Isabelle

A happy fact of life

Programming language researchers are increasingly using ITPs

Why verification pays off

Short term:
The software works!
Long term:
Tracking effects of changes by rerunning proofs Incremental changes of the software typically require only incremental changes of the proofs

Long term much more important than short term: Software Never Dies
(1) Introduction

Background
This Course

What this course is not about

- Hot or trendy PLs
- Comparison of PLs or PL paradigms
- Compilers (although they will be one application)

What this course is about

- Techniques for the description and analysis of
- PLs
- PL tools
- Programs
- Description techniques: operational semantics
- Proof techniques: inductions

Both informally and formally (ITP!)

Our ITP: Isabelle/HOL

- Developed mainly in Munich (Nipkow \& Co) and Paris (Wenzel)
- Started 1986 in Cambridge (Paulson)
- The logic HOL is ordinary mathematics

Learning to use Isabelle/HOL is an integral part of the course
All exercises require the use of Isabelle/HOL

Why I am so passionate about the ITP part

- It is the future
- It is the only way to deal with complex languages reliably
- I want students to learn how to write correct proofs
- I have seen too many proofs that look more like LSD trips than coherent mathematical arguments

Overview of course

- Introduction to Isabelle/HOL
- IMP (assignment and while loops) and its semantics
- A compiler for IMP
- Hoare logic for IMP
- Type systems for IMP
- Program analysis for IMP

The semantics part of the course is mostly traditional The use of an ITP is leading edge

So far, there are only a handful of universties that combine these two topics as aggressively as we do: Harvard, Princeton, UPenn, Saarbrücken, ...

What you learn in this course goes far beyond PLs
It has applications in compilers, security, software engineering etc.

It is a new approach to informatics

Part I

Programming and Proving in HOL
(2) Overview of Isabelle/HOL
(3) Type and function definitions
(4) Simplification and Induction

Notation

Implication associates to the right:

$$
\begin{aligned}
& A \Longrightarrow B \Longrightarrow C \text { means } A \Longrightarrow(B \Longrightarrow C) \\
& \frac{A_{1} \ldots \quad A_{n}}{B} \text { means } A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B
\end{aligned}
$$

(2) Overview of Isabelle/HOL

(3) Type and function definitions

(4) Simplification and Induction

HOL = Higher-Order Logic $\mathrm{HOL}=$ Functional Programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!
Higher-order $=$ functions are values, too!
HOL Formulas:

- For the moment: only term $=$ term, e.g. $1+2=4$
- Later: $\wedge, \vee, \longrightarrow, \forall, \ldots$
(2) Overview of Isabelle/HOL

Types and terms
Proof General
By example: types bool, nat and list
Summary

Types

Basic type syntax:

$$
\begin{array}{ccl}
\tau & ::= & (\tau) \\
& \text { bool } \mid \text { nat } \mid \ldots & \text { base types } \\
& \prime a \mid \text { 'b } \mid \ldots & \text { type variables } \\
\tau \Rightarrow \tau & \text { functions } \\
\tau \times \tau & \text { pairs (ascii: } *) \\
\tau= & \text { lists } \\
\tau \text { list } & \text { sets } \\
\tau \text { set } & \text { user-defined types }
\end{array}
$$

Convention: $\quad \tau_{1} \Rightarrow \tau_{2} \Rightarrow \tau_{3} \equiv \tau_{1} \Rightarrow\left(\tau_{2} \Rightarrow \tau_{3}\right)$

Terms

Terms can be formed as follows:

- Function application:
$f t$
is the call of function f with argument t.
If f has more arguments: $f t_{1} t_{2} \ldots$
Examples: $\sin \pi$, plus $x y$
- Function abstraction:
λx. t
is the function with parameter x and result t,
i.e. " $x \mapsto t$ ".

Example: λx. plus $x x$

Basic term syntax:

$$
\begin{array}{rll}
t: & := & (t) \\
& a & \\
t t & \text { constant or variable (ic } \\
& \text { function application } \\
& \ldots x . t & \text { function abstraction } \\
& \text { lots of syntactic sugar }
\end{array}
$$

Examples: $f(g x) y$

$$
h(\lambda x . f(g x))
$$

Convention: $f t_{1} t_{2} t_{3} \equiv\left(\left(f t_{1}\right) t_{2}\right) t_{3}$
This language of terms is known as the λ-calculus.

The computation rule of the λ-calculus is the replacement of formal by actual parameters:

$$
(\lambda x . t) u=t[u / x]
$$

where $t[u / x]$ is " t with u substituted for $x^{\prime \prime}$.
Example: $(\lambda x \cdot x+5) 3=3+5$

- The step from $(\lambda x . t) u$ to $t[u / x]$ is called β-reduction.
- Isabelle performs β-reduction automatically.

Terms must be well-typed

(the argument of every function call must be of the right type)
Notation:
$t:: \tau$ means " t is a well-typed term of type τ ".

$$
\frac{t:: \tau_{1} \Rightarrow \tau_{2} \quad u:: \tau_{1}}{t u:: \tau_{2}}
$$

Type inference

Isabelle automatically computes the type of each variable in a term. This is called type inference.

In the presence of overloaded functions (functions with multiple types) this is not always possible.

User can help with type annotations inside the term. Example: f (x::nat)

Currying

Thou shalt Curry your functions

- Curried: $f:: \tau_{1} \Rightarrow \tau_{2} \Rightarrow \tau$
- Tupled: $f^{\prime}:: \tau_{1} \times \tau_{2} \Rightarrow \tau$

Advantage:
Currying allows partial application $f a_{1}$ where $a_{1}:: \tau_{1}$

Predefined syntactic sugar

- Infix: +,,- , \#, @, ...
- Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:
! $f x+y \equiv(f x)+y \not \equiv f(x+y)$

Enclose if and case in parentheses:
! (if _ then_else_) !

Isabelle text $=$ Theory $=$ Module

Syntax: theory MyTh imports ImpTh $_{1} \ldots$ Imp $^{2} h_{n}$
begin
(definitions, theorems, proofs, ...)*
end
MyTh: name of theory. Must live in file MyTh.thy $I m p T h_{i}$: name of imported theories. Import transitive.

Usually: imports Main
(2) Overview of Isabelle/HOL

Types and terms
Proof General
By example: types bool, nat and list
Summary

Proof General

An Isabelle Interface

by David Aspinall

Proof General

Customized version of (x)emacs:

- all of emacs
- Isabelle aware (when editing .thy files)
- mathematical symbols ("x-symbols")

X-Symbols

Input of funny symbols

- via abbreviation: =>, ==>, /,$~ \ /, \ldots$
- via ascii encoding (similar to $\mathrm{A}^{2} \mathrm{E}_{\mathrm{E}}$): \<and>,...
- via menu ("X-Symbol")

I3P by Holger Gast

Similar to ProofGeneral but

- Does not need emacs
- \Longrightarrow easier to install!
- Based on Netbeans/Swing
- \Longrightarrow may be more familiar
- Nicer fonts

Concrete syntax

In .thy files:

Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides

Overview_Demo.thy
(2) Overview of Isabelle/HOL

Types and terms
Proof General
By example: types bool, nat and list Summary

Type bool

datatype bool $=$ True \mid False
Predefined functions:
$\wedge, \vee, \longrightarrow, \ldots$: bool \Rightarrow bool \Rightarrow bool

A logical formula is a term of type bool
if-and-only-if: =

Type nat

datatype nat $=0 \mid$ Suc nat
Values of type nat: 0, Suc 0, Suc(Suc 0), ...
Predefined functions: $+, *, \ldots:$ nat \Rightarrow nat \Rightarrow nat
! Numbers and arithmetic operations are overloaded:
$0,1,2, \ldots:: ' a, \quad+::{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a$
You need type annotations: $1::$ nat, $x+(y:: n a t)$
... unless the context is unambiguous: Suc z

Nat_Demo.thy

Type 'a list

Lists of elements of type ' a
datatype 'a list $=$ Nil \mid Cons 'a ('a list)
Syntactic sugar:

- [] = Nil: empty list
- $x \#$ xs $=$ Cons x xs:
list with first element x ("head") and rest $x s$ ("tail")
- $\left[x_{1}, \ldots, x_{n}\right]=x_{1} \# \ldots x_{n} \#[]$

Structural Induction for lists

To prove that $P(x s)$ for all lists $x s$, prove

- $P([])$ and
- for arbitrary x and $x s, P(x s)$ implies $P(x \# x s)$.

$$
\frac{P([]) \quad \bigwedge x x s . P(x s) \Longrightarrow P(x \# x s)}{P(x s)}
$$

List_Demo.thy

Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!
Predefined: xs @ ys (append), length, and map:

$$
\operatorname{map} f\left[x_{1}, \ldots, x_{n}\right]=\left[f x_{1}, \ldots, f x_{n}\right]
$$

fun map $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow^{\prime} a$ list $\Rightarrow{ }^{\prime} b$ list where $\operatorname{map} f[]=[] \quad \mid$ $\operatorname{map} f(x \# x s)=f x \# \operatorname{map} f x s$

Note: map takes function as argument.
(2) Overview of Isabelle/HOL

Types and terms
Proof General
By example: types bool, nat and list
Summary

- datatype defines (possibly) recursive data types.
- fun defines (possibly) recursive functions by pattern-matching over datatype constructors.

Proof methods

- induct performs structural induction on some variable (if the type of the variable is a datatype).
- auto solves as many subgoals as it can, mainly by simplification (symbolic evaluation):
" $=$ " is used only from left to right!

Proofs

General schema:
lemma name: ". .."
apply (...) apply (...)
;
done
If the lemma is suitable as a simplification rule:
lemma name[simp]: "..."

Top down proofs

Command

sorry

"completes" any proof.
Allows top down development:
Assume lemma first, prove it later.

The proof state

1. $\wedge x_{1} \ldots x_{p} . A \Longrightarrow B$
$x_{1} \ldots x_{p}$ fixed local variables
$A \quad$ local assumption(s)
$B \quad$ actual (sub)goal

Preview: Multiple assumptions

$$
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B
$$

abbreviates

$$
\begin{gathered}
A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B \\
; \quad \approx \text { "and" }
\end{gathered}
$$

(2) Overview of Isabelle/HOL

(3) Type and function definitions

4. Simplification and Induction

(3) Type and function definitions Type definitions
Function definitions

Type abbreviations

types $n a m e=\tau$
Introduces an abbreviation name for type τ

Examples:

types
name $=$ string
$\left({ }^{\prime} a,{ }^{\prime} b\right)$ foo $=$ ' a list \times 'b list

Type abbreviations are expanded after parsing and are not present in internal representation and output

datatype - the general case

 $\begin{aligned} \text { datatype }\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau= & C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}} \\ & \mid \\ & C_{k} \tau_{k, 1} \ldots \tau_{k, n_{k}}\end{aligned}$- Types: $C_{i}:: \tau_{i, 1} \Rightarrow \cdots \Rightarrow \tau_{i, n_{i}} \Rightarrow\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau$
- Distinctness: $C_{i} \ldots \neq C_{j} \ldots$ if $i \neq j$
- Injectivity: $\left(C_{i} x_{1} \ldots x_{n_{i}}=C_{i} y_{1} \ldots y_{n_{i}}\right)=$

$$
\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n_{i}}=y_{n_{i}}\right)
$$

Distinctness and injectivity are applied automatically Induction must be applied explicitly

Case expressions

Datatype values can be taken apart with case:

$$
\text { (case xs of }[] \Rightarrow \ldots \text { | } y \# y s \Rightarrow \ldots y \ldots y s \ldots)
$$

Wildcards: _

$$
\left(\text { case } m \text { of } 0 \Rightarrow \text { Suc } 0 \mid \quad S u c_{-} \Rightarrow 0\right)
$$

Nested patterns:
(case xs of $[0] \Rightarrow 0 \mid[$ Suc $n] \Rightarrow n \mid{ }_{-} \Rightarrow 2$ 2)

Complicated patterns mean complicated proofs! Need () in context
(3) Type and function definitions Type definitions
Function definitions

Non-recursive definitions

Example:
 definition $s q::$ nat \Rightarrow nat where $s q n=n * n$

No pattern matching, just $f x_{1} \ldots x_{n}=\ldots$

Nontermination can kill

How about $f x=f x+1$?

! All functions in HOL must be total

Key features of fun

- Pattern-matching over datatype constructors
- Order of equations matters
- Termination must be provable automatically by size measures
- Proves customized induction schema

Example: separation

fun sep $::$ ' $a \Rightarrow{ }^{\prime} a$ list \Rightarrow ' a list where

$$
\begin{aligned}
& \text { sep } a(x \# y \# z s)=x \# a \# \text { sep } a(y \# z s) \mid \\
& \text { sep } a x s=x s
\end{aligned}
$$

Example: Ackermann

fun ack :: nat \Rightarrow nat \Rightarrow nat where

ack 0	n	$=$ Suc n
ack $($ Suc $m)$	0	$=\operatorname{ack} m($ Suc 0$) \mid$
ack $($ Suc $m)$	$($ Suc $n)$	$=\operatorname{ack} m(\operatorname{ack}($ Suc $m) n)$

Terminates because the arguments decrease lexicographically with each recursive call:

- (Suc m, 0) $>(m$, Suc 0)
- (Suc m, Suc n) $>$ (Suc m, n)
- (Suc m, Suc $n)>\left(m,{ }_{-}\right)$

Tree_Demo.thy

primrec

- A restrictive version of fun
- Means primitive rercursive
- Most functions are primitive recursive
- Frequently found in Isabelle theories

The essence of primitive recursion:
$f(0) \quad=\ldots$
no recursion
$f($ Suc $n)=\ldots f(n) \ldots$
$g([]) \quad=\ldots$
no recursion
$g(x \# x s)=\ldots g(x s) \ldots$

(2) Overview of Isabelle/HOL

(3) Type and function definitions

(4) Simplification and Induction
(4) Simplification and Induction Simplification Induction

Simplification means...

Using equations $l=r$ from left to right

As long as possible
Terminology: equation \sim simplification rule
Simplification $=($ Term $)$ Rewriting

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}
\end{align*}
$$

$$
\begin{align*}
0+\text { Suc } 0 & \leq \text { Suc } 0+x \tag{1}\\
\text { Suc } 0 & \leq \text { Suc } 0+x
\end{align*}
$$

$\stackrel{(2)}{=}$
Rewriting:

$$
\begin{gathered}
\text { Suc } 0 \leq \text { Suc }(0+x) \\
0 \leq 0+x \\
\text { True }
\end{gathered}
$$

Conditional rewriting

Simplification rules can be conditional:

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is applicable only if all P_{i} can be proved first, again by simplification.

Example:

$$
\begin{aligned}
p(0) & =\text { True } \\
p(x) \Longrightarrow f(x) & =g(x)
\end{aligned}
$$

We can simplify $f(0)$ to $g(0)$ but we cannot simplify $f(1)$ because $p(1)$ is not provable.

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only
if l is "bigger" than r and each P_{i}

$$
\begin{aligned}
& n<m \Longrightarrow(n<\text { Suc } m)=\text { True YES } \\
& \text { Suc } n<m \Longrightarrow(n<m)=\text { True NO }
\end{aligned}
$$

Proof method simp

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $e q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
- auto can also be modified:
(auto simp add: . . . simp del: ...)

Rewriting with definitions

Definitions (definition) must be used explicitly:

$$
\left(\text { simp add: } f_{-} d e f \ldots\right)
$$

f is the function whose definition is to be unfolded.

Case splitting with simp

Automatic:

$$
P(\text { if } A \text { then } s \text { else } t)
$$

$$
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
$$

By hand:

$$
\begin{gathered}
P(\text { case e of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
= \\
(e=0 \longrightarrow P(a)) \wedge(\forall n \cdot e=\text { Suc } n \longrightarrow P(b))
\end{gathered}
$$

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t : t.split

Simp_Demo.thy

(4) Simplification and Induction

Simplification
Induction

Basic induction heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list \Rightarrow ' a list where

```
rev [] = [] |
rev (x#xs) = rev xs @ [x]
```

A tail recursive version:
fun itrev :: 'a list \Rightarrow 'a list \Rightarrow ' a list where
itrev [] $\quad y s=y s \mid$
itrev ($x \# x s$) ys $=$
lemma itrev xs []$=$ rev xs
Why in this direction?
Because the lhs is "more complex" than the rhs.

Induct_Demo.thy

Generalisation

Generalisation

- Replace constants by variables
- Generalize free variables
- by \forall in formula
- by arbitrary in induction proof

So far, all proofs were by structural induction because all functions where primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.
Now: induction for complex recursion patterns.

Computation Induction:
 Example

fun div2 $::$ nat \Rightarrow nat where
div2 $0=0 \mid$
$\operatorname{div2}($ Suc 0$)=0 \mid$
$\operatorname{div2}(\operatorname{Suc}(\operatorname{Suc} n))=\operatorname{Suc}(\operatorname{div2} n)$
\sim induction rule div2.induct:

$$
\frac{P(0) \quad P(\text { Suc } 0) \quad P(n) \Longrightarrow P(S u c(\text { Suc } n))}{P(m)}
$$

Computation Induction

If $f:: \tau \Rightarrow \tau^{\prime}$ is defined by fun, a special induction schema is provided to prove $P(x)$ for all $x:: \tau$:
for each defining equation

$$
f(e)=\ldots f\left(r_{1}\right) \ldots f\left(r_{k}\right) \ldots
$$

prove $P(e)$ assuming $P\left(r_{1}\right), \ldots, P\left(r_{k}\right)$.

Induction follows course of (terminating!) computation Motto: properties of f are best proved by rule f.induct

How to apply f.induct

If $f:: \tau_{1} \Rightarrow \cdots \Rightarrow \tau_{n} \Rightarrow \tau^{\prime}$:

$$
\text { (induct } a_{1} \ldots a_{n} \text { rule: f.induct) }
$$

Heuristic:

- there should be a call $f a_{1} \ldots a_{n}$ in your goal
- ideally the a_{i} should be variables.

Induct_Demo.thy

Computation Induction

Part II

Interlude: Expressions

(5) IMP Expressions

5 IMP Expressions

This section introduces

arithmetic and boolean expressions

of our imperative language IMP.
IMP commands are introduced later.
(5) IMP Expressions

Arithmetic Expressions
Boolean Expressions
Stack Machines and Compilation

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5*b"
Abstract syntax: trees, eg

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)
Abstract syntax trees/terms are datatype values!

Concrete syntax is defined by a context-free grammar, eg

$$
a::=n|x|(a)|a+a| a * a \mid \ldots
$$

where n can be any natural number and x any variable.

We focus on abstract syntax which we introduce via datatypes.

Datatype aexp

Variable names are replaced by numbers:
types name $=$ nat datatype aexp $=N$ nat $\mid V$ name \mid Plus aexp aexp

Concrete	Abstract
5	$N 5$
x	V 0
x+y	Plus (lla) (ll)
$2+(z+3)$	Plus (N 2) (Plus (V 2) (N 3))

Warning

This is syntax, not (yet) semantics!

$$
N 0 \neq \operatorname{Plus}\left(\begin{array}{ll}
N 0
\end{array}\right)\left(\begin{array}{ll}
N 0
\end{array}\right)
$$

The (program) state

What is the value of $x+1$?

- The value of an expression depends on the value of its variables.
- The value of all variables is recorded in the state.
- The state is a function from variable names to values:
types state $=$ name \Rightarrow nat

How to write down a state

- There is no pretty notation like $\{0 \mapsto 7,1 \mapsto 42, \ldots\}$
- But there is $[7,42, \ldots]$
- And there is $n t h::$ 'a list $\Rightarrow\left(n a t \Rightarrow{ }^{\prime} a\right)$
- Thus: nth $[7,42, \ldots]$:: state

$$
n \operatorname{th}[7,42, \ldots] \approx\{0 \mapsto 7,1 \mapsto 42, \ldots\}
$$

The joys of partial application!

- Infix syntax for $n t h$ xs n : xs ! n
- By def of $n t h:[7,42, \ldots]!1=42$
- Warning: [7, 42]! 3 has some value but we do not know which!

AExp.thy

(5) IMP Expressions

Arithmetic Expressions
Boolean Expressions
Stack Machines and Compilation

BExp.thy
(5) IMP Expressions

Arithmetic Expressions
Boolean Expressions
Stack Machines and Compilation

ASM.thy

This was easy.
Because evaluation of expressions always terminates. But execution of programs may not terminate. Hence we cannot define it by a total recursive function.

We need more logical machinery to define program execution and reason about it.

Part III

Logic and Structured Proofs

(6) Logic and Proof beyond "="

7 Isar: A Language for Structured Proofs

(6) Logic and Proof beyond " $=$ "

7 Isar: A Language for Structured Proofs

(6) Logic and Proof beyond " $=$ "

Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions

Syntax (in decreasing priority):

$$
\begin{array}{rl|l|l}
\text { form }::=(\text { form }) & \text { term }=\text { term } & \neg \text { form } \\
& \mid \text { form } \wedge \text { form } & \text { form } \vee \text { form } & \mid \text { form } \longrightarrow \text { form } \\
& \forall x . \text { form } & \exists x . \text { form } &
\end{array}
$$

Examples:

$$
\begin{aligned}
\neg A \wedge B \vee C & \equiv((\neg A) \wedge B) \vee C \\
s=t \wedge C & \equiv(s=t) \wedge C \\
A \wedge B=B \wedge A & \equiv A \wedge(B=B) \wedge A \\
\forall x . P x \wedge Q x & \equiv \forall x .(P x \wedge Q x)
\end{aligned}
$$

Input syntax: $\longleftrightarrow \quad$ (same priority as \longrightarrow)

Conventions:

- \wedge, \vee and \longrightarrow associate to the right:
$A \wedge B \wedge C \equiv A \wedge(B \wedge C)$
- $A \longrightarrow B \longrightarrow C \equiv A \longrightarrow(B \longrightarrow C)$

$$
\not \equiv(A \longrightarrow B) \longrightarrow C \quad!
$$

- $\forall x y . P x y \equiv \forall x . \forall y . P x y \quad(\forall, \exists, \lambda, \ldots)$

Warning

Quantifiers have low priority and need to be parenthesized (if in some context)

$$
\text { ! } P \wedge \forall x \cdot Q x \leadsto P \wedge(\forall x . Q x) \text { ! }
$$

X-Symbols

... and their ascii representations:

\forall	\<forall>	ALL
\exists	$\backslash<$ exists>	EX
λ	$\backslash<$ lambda>	$\%$
\longrightarrow	$-->$	
\longleftrightarrow	$<-->$	
Λ	M	$\&$
\vee	$\backslash /$	\sim
\neg	$\backslash<$ not>	\sim
\neq	\<noteq>	\sim

Sets over type ' a

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x, P x\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B,-A$ - . . .

$$
\begin{array}{lll}
\in & \backslash<\text { in> } & : \\
\subseteq & \backslash<\text { subseteq> } & <= \\
\cup & \backslash<\text { union> } & \text { Un } \\
\cap & \backslash<\text { inter }> & \text { Int }
\end{array}
$$

(6) Logic and Proof beyond " =" Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions

simp and auto

simp: rewriting and a bit of arithmetic auto: rewriting and a bit of arithmetic, logic and sets

- Show you where they got stuck
- highly incomplete
- Extensible with new simp-rules

Exception: auto acts on all subgoals

fastsimp

- rewriting, logic, sets, relations and a bit of arithmetic.
- incomplete but better than auto.
- Succeeds or fails
- Extensible with new simp-rules

blast

- A complete proof search procedure for FOL ...
- . . . but (almost) without "="
- Covers logic, sets and relations
- Succeeds or fails
- Extensible with new deduction rules

Automating arithmetic

arith:

- proves linear formulas (no"*")
- complete for quantifier-free real arithmetic
- complete for first-order theory of nat and int (Presburger arithmetic)

Sledgehammer

Architecture:

Isabelle

Formula
 \& filtered library

 external
 ATPs ${ }^{1}$

Characteristics:

- Sometimes it works,
- sometimes it doesn't.

Do you feel lucky?
${ }^{1}$ Automatic Theorem Provers

by (proof-method)

$$
\approx
$$

apply (proof-method) done

Auto_Proof_Demo.thy

(6) Logic and Proof beyond " $=$ "

Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions

Step-by-step proofs can be necessary if automation fails and you have to explore where and why it failed.

Step-by-step proofs can occasionally be more readable than automagic proofs.

What are these ?-variables?

After you have finished a proof, Isabelle turns all free variables V in the theorem into ? V.

Example: theorem conjI: $\llbracket ? P ; ? Q \rrbracket \Longrightarrow ? P \wedge ? Q$
These ?-variables can later be instantiated:

- By hand:

$$
\begin{aligned}
& \text { conjI[of "a=b" "False"] } \\
& \llbracket a=b ; \text { False } \rrbracket \Longrightarrow
\end{aligned}
$$

- By unification:
unifying ? $P \wedge ? Q$ with $a=b \wedge$ False sets ? P to $a=b$ and ? Q to False.

Rule application

Example: rule: $\llbracket ? P ; ? Q \rrbracket \Longrightarrow ? P \wedge$? Q subgoal: $1 . \ldots \Longrightarrow A \wedge B$
Result: 1. $\ldots \Longrightarrow A$

$$
\text { 2. } \ldots \Longrightarrow B
$$

The general case: applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

- Unify A and C
- Replace C with n new subgoals $A_{1} \ldots A_{n}$
apply (rule $x y z$)
"Backchaining"

Typical backwards rules

$$
\begin{gathered}
\frac{? P \quad ? Q}{? P \wedge ? Q} \operatorname{conjI} \\
\frac{? P \Longrightarrow ? Q}{? P \longrightarrow ? Q} \mathrm{impI} \quad \frac{\bigwedge x \cdot ? P x}{\forall x \cdot ? P x} \text { allI } \\
\frac{? P \Longrightarrow ? Q \quad ? Q \Longrightarrow ? P}{? P=? Q} \mathrm{iffI}
\end{gathered}
$$

They are known as introduction rules because they introduce a particular connective.

Teaching blast new intro rules

If r is a theorem $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ then
(blast intro: r)
allows blast to backchain on r during proof search.

Example:

theorem trans: $\llbracket ? x \leq ? y ; ? y \leq ? z \rrbracket \Longrightarrow ? x \leq ? z$

$$
\text { goal 1. } \llbracket a \leq b ; b \leq c ; c \leq d \rrbracket \Longrightarrow a \leq d
$$ proof apply(blast intro: trans)

Can greatly increase the search space!

Forward proof: OF

If r is a theorem $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$
and $r_{1}, \ldots, r_{m}(m \leq n)$ are theorems then

$$
r\left[\begin{array}{llll}
O F & r_{1} & \ldots & r_{m}
\end{array}\right]
$$

is the theorem obtained
by proving $A_{1} \ldots A_{m}$ with $r_{1} \ldots r_{m}$.
Example: theorem refl: ?t $=? t$

$$
\begin{aligned}
& \text { conjI[OF refl[of "a"] refl[of "b"]] } \\
& a=a \wedge b=b
\end{aligned}
$$

From now on: ? mostly suppressed on slides

Single_Step_Demo.thy

\Longrightarrow versus

\Longrightarrow is part of the Isabelle framework. It structures theorems and proof states: $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$
\longrightarrow is part of HOL and can occur inside the logical formulas A_{i} and A.

Phrase theorems like this $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ not like this $A_{1} \wedge \ldots \wedge A_{n} \longrightarrow A$

(6) Logic and Proof beyond "="

Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions

Example: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$
- These are the only even numbers

In Isabelle/HOL:
inductive Ev :: nat \Rightarrow bool where

$$
\begin{aligned}
& E v 0 \\
& E v \\
& E v
\end{aligned}
$$

Easy proof: Ev 4

$$
E v 0 \Longrightarrow E v 2 \Longrightarrow E v_{4}
$$

Trickier proof: $E v m \Longrightarrow E v(m+m)$
Idea: induction on the length of the proof of $E v m$ Better: induction on the structure of the proof Two cases: $E v m$ is proved by

- rule $E v 0$

$$
\Longrightarrow m=0 \Longrightarrow E v(0+0)
$$

- rule $E v n \Longrightarrow E v(n+2)$

$$
\begin{aligned}
& \Longrightarrow m=n+2 \text { and } E v(n+n) \text { (ind. hyp.!) } \\
& \Longrightarrow m+m=(n+2)+(n+2)=((n+n)+2)+2 \\
& \Longrightarrow E v(m+m)
\end{aligned}
$$

Rule induction for Ev

To prove

$$
E v n \Longrightarrow P n
$$

by rule induction on $E v n$ we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

Rule Ev.induct:

$$
\frac{E v n \quad P 0 \wedge n . P n \Longrightarrow P(n+2)}{P n}
$$

Format of inductive definitions

inductive $I:: \tau \Rightarrow$ bool where

$$
\llbracket I a_{1} ; \ldots ; I a_{n} \rrbracket \Longrightarrow I a
$$

Note:

- I may have multiple arguments.
- Each rule may also contain side conditions not involving I.

Rule induction in general

To prove

$$
I x \Longrightarrow P x
$$

by rule induction on $I x$ we must prove for every rule

$$
\llbracket I a_{1} ; \ldots ; I a_{n} \rrbracket \Longrightarrow I a
$$

that P is preserved:

$$
\llbracket P a_{1} ; \ldots ; P a_{n} \rrbracket \Longrightarrow P a
$$

Rule induction is absolutely central to (operational) semantics and the rest of this lecture course

Inductive_Demo.thy

(6) Logic and Proof beyond "="

7 Isar: A Language for Structured Proofs

Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!

Apply scripts versus Isar proofs

Apply script $=$ assembly language program
Isar proof $=$ structured program with comments

But: apply still useful for proof exploration

A typical Isar proof

proof
 assume formula ${ }_{0}$
 have formula ${ }_{1}$ by simp
 have formula ${ }_{n}$ by blast show formula ${ }_{n+1}$ by ...
 qed

proves formula $a_{0} \Longrightarrow$ formula $_{n+1}$

Isar core syntax

proof $=$ proof [method] step* qed
by method
method $=(\operatorname{simp} \ldots) \mid($ blast $\ldots) \mid($ induct $\ldots) \mid \ldots$
step $=\mathbf{f i x}$ variables
assume prop
[from fact ${ }^{+}$] (have \midshow) prop proof
prop $=$ [name:] "formula"
fact $=$ name $\mid \ldots$

7 Isar: A Language for Structured Proofs Isar by example
Proof patterns
Pattern Matching and Quotations Top down proof development moreover and raw proof blocks Induction
Rule Induction

Example: Cantor's theorem

lemma Cantor: ᄀ $\operatorname{surj}(f::$ ' $a \Rightarrow$ ' a set $)$ proof default proof: assume surj, show False assume a : surj f
from a have $b: ~ \forall A$. $\exists a$. $A=f a$ by (simp add: surj_def)
from b have $c: \exists a .\{x . x \notin f x\}=f a$ by blast
from c show False by blast
qed

Isar_Demo.thy

Cantor and abbreviations

Abbreviations

$\begin{aligned} \text { this } & =\text { the previous proposition proved or assumed } \\ \text { then } & =\text { from this } \\ \text { thus } & =\text { then show } \\ \text { hence } & =\text { then have }\end{aligned}$

using and with

(have|show) prop using facts
 from facts (have|show) prop

with facts
from facts this

Structured lemma statement

lemma Cantor':
fixes $f::{ }^{\prime} a \Rightarrow$ ' a set
assumes s : surj f
shows False
proof - no automatic proof step
have $\exists a .\{x . x \notin f x\}=f a$ using s
by (auto simp: surj_def)
thus False by blast
qed
Proves surj $f \Longrightarrow$ False
but surj f becomes local fact s in proof.

The essence of structured proofs

Assumptions and intermediate facts can be named and referred to explicitly and selectively

Structured lemma statements

fixes $x:: \tau_{1}$ and $y:: \tau_{2} \ldots$ assumes a : P and $b: Q \ldots$ shows R

- fixes and assumes sections optional
- shows optional if no fixes and assumes

7 Isar: A Language for Structured Proofs

Isar by example

Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction

show $P \longleftrightarrow Q$ proof assume P
show $Q \ldots$
next assume Q
show P...
qed

Set equality and subset

show $A=B$
proof show $A \subseteq B$
next
show $B \subseteq A$
qed
show $A \subseteq B$
proof
fix x
assume $x \in A$
show $x \in B \ldots$
qed

Case distinction

show R
proof cases
assume P
\vdots
show $R \ldots$
next
assume $\neg P$
\vdots
show R...
qed
have $P \vee Q \ldots$
then show R
proof assume P
show R...
next
assume Q
show R...
qed
show $\neg P$
proof assume P
\vdots
show False qed
show P
proof (rule ccontr) assume $\neg P$
:
show False ...
qed
Contradiction

\forall and \exists introduction

show $\forall x . P(x)$
proof
fix x local fixed variable
show $P(x) \ldots$
qed
show $\exists x . P(x)$
proof

> show $P($ witness $) \ldots$ qed

\exists elimination: obtain

have $\exists x . P(x)$
then obtain x where $p: P(x)$ by blast

! x fixed local variable

Works for one or more x

obtain example

lemma Cantor': $\neg \operatorname{surj}\left(f::{ }^{\prime} a \Rightarrow{ }^{\prime} a\right.$ set $)$ proof
assume surj f
hence $\exists a$. $\{x . x \notin f x\}=f a \operatorname{by}($ auto simp: surj_def)
then obtain a where $\{x, x \notin f x\}=f a$ by blast hence $a \notin f a \longleftrightarrow a \in f a$ by blast
thus False by blast
qed

Isar_Demo.thy

Exercise

7 Isar: A Language for Structured Proofs

Isar by example

Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction

Example: pattern matching

```
show formula}1\longleftrightarrow\mp@subsup{\mathrm{ formula}}{2}{}(\mathrm{ is ? L }\longleftrightarrow?R
proof
    assume ?L
    :
    show ?R ...
next
    assume ?R
```

 !
 show ? L ...
 qed

?thesis

> show formula (is?thesis)
> proof -
> show ?thesis ...
> qed

Every show implicitly defines ?thesis

let

Introducing local abbreviations in proofs:
let $? t=$ "some-big-term"
:
have "...?t ..."

Quoting facts by value

By name:
have $x 0$: " $x>0$ " \ldots
:
from $x 0 \ldots$

By value:
have " $x>0$ "...
\vdots
from ' $x>0$ ' \ldots
back quotes

Isar_Demo.thy

Pattern matching and quotation

7 Isar: A Language for Structured Proofs Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development moreover and raw proof blocks
Induction
Rule Induction

Example

lemma

assumes $x s=r e v x s$
shows $(\exists y s . x s=y s$ @ revys) \vee

$$
(\exists y s a . x s=y s @ a \# \text { rev ys })
$$

proof ???

Isar_Demo.thy

Top down proof development

When automation fails

Split proof up into smaller steps.
Or explore by apply:
have . . . using ...
apply -
to make incoming facts
part of proof state
apply auto
apply ...
At the end:

- done
- Better: convert to structured proof

7 Isar: A Language for Structured Proofs
Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction

moreover-ultimately

have $P_{1} \ldots$
moreover
have P_{2}
moreover
:
moreover
have P_{n}...
ultimately
have P
have $l a b_{1}: P_{1} \ldots$
have $l a b_{2}: P_{2} \ldots$
have $l a b_{n}: P_{n} \ldots$
from $l a b_{1} l a b_{2} \ldots$ have P

With names

Raw proof blocks

$\left\{\boldsymbol{f i x} x_{1} \ldots x_{n}\right.$
assume $A_{1} \ldots A_{m}$

have B

\}
proves $\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow B$
where all x_{i} have been replaced by ? x_{i}.

Isar_Demo.thy

moreover and $\{\quad\}$

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):

$$
\bigwedge x_{1} \ldots x_{n} \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow B
$$

How to prove each subgoal:
fix $x_{1} \ldots x_{n}$
assume $A_{1} \ldots A_{m}$
\vdots
show B
Separated by next

7 Isar: A Language for Structured Proofs

Isar by example

Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction

Isar_Induct_Demo.thy

Case distinction

Datatype case distinction

 datatype $t=C_{1} \vec{\tau} \mid \ldots$```
proof (cases "term")
 case (}\mp@subsup{C}{1}{}\vec{x}
 ... \vec{x ...}
next
:
qed
```

where case $\left(C_{i} \vec{x}\right) \equiv$
fix $\vec{x}$
assume $\underbrace{C_{i}:}_{\text {label }} \underbrace{\text { term }=\left(C_{i} \vec{x}\right)}_{\text {formula }}$

## Isar_Induct_Demo.thy

Structural induction for nat

## Structural induction for nat

show $P(n)$
proof (induct n)
case 0
$\equiv$ let ?case $=P(0)$
show?case
next
case $($ Suc $n) \quad \equiv$ fix $n$ assume Suc: $P(n)$
let ? case $=P(S u c n)$
show?case
qed

## Structural induction with $\Longrightarrow$

```
show \(A(n) \Longrightarrow P(n)\)
proof (induct \(n\))
```

case 0
:
show ?case
next
case (Suc n)
:
:
show ?case qed
$\equiv$ fix $x$ assume $0: A(0)$
let ?case $=P(0)$
$\equiv \boldsymbol{f i x} n$
assume $S u c: \quad A(n) \Longrightarrow P(n)$ A(Suc n)
let ?case $=P($ Suc $n)$

## A remark on style

- case (Suc $n$ ) ...show ?case is easy to write and maintain
- fix $n$ assume formula . . show formula ${ }^{\prime}$ is easier to read:
- all information is shown locally
- no contextual references (e.g. ?case)
(7) Isar: A Language for Structured Proofs


## Isar by example

Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction

# Isar_Induct_Demo.thy 

Rule induction

## Rule induction

inductive $I:: \tau \Rightarrow \sigma \Rightarrow$ bool where
rule ${ }_{1}$ :...
rule ${ }_{n}$ : ...
show $I x y \Longrightarrow P x y$ proof (induct rule: I.induct) case rule $_{1}$
show ?case
next
next
case rule $_{n}$
show ?case
qed

## Fixing your own variable names

case $\left(\right.$ rule $\left._{i} x_{1} \ldots x_{k}\right)$

Renames the first $k$ variables in rule $_{i}$ (from left to right) to $x_{1} \ldots x_{k}$.

## The named assumptions

Given: an inductive definition of $I$.
In a proof of

$$
I_{\ldots} \ldots A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B
$$

in the context of case $R$
we have
$R$.hyps the assumptions of rule $R$, plus the induction hypothesis for each assumption $I \ldots$
R.prems the premises $A_{i}$

$$
R=\text { R.hyps @ R.prems }
$$

## Part IV

IMP: A Simple Imperative Language

## 8 IMP

## (9) Compiler

(10) A Typed Version of IMP

## 8 IMP

## (9) Compiler

(10) A Typed Version of IMP

## Terminology

Statement: declaration of fact or claim

## Semantics is easy.

Command: order to do something
Read the slides until you have understood them.

Expressions are evaluated, commands are executed

## Commands

Concrete syntax:

$$
\begin{aligned}
\operatorname{com}::= & \text { SKIP } \\
& \text { nat }::=\operatorname{aexp} \\
& \text { com } ; \operatorname{com} \\
& \text { IF bexp THEN com ELSE com } \\
& \text { WHILE bexp DO com }
\end{aligned}
$$

## Commands

Abstract syntax:
datatype com $=S K I P$
| Assign nat aexp
Semi com com
If bexp com com
While bexp com

Com.thy

## Function update notation

If $f:: \tau_{1} \Rightarrow \tau_{2}$ and $a:: \tau_{1}$ and $b:: \tau_{2}$ then

$$
f(a:=b)
$$

is the function that behaves like $f$
except that it returns $b$ for argument $a$.

$$
f(a:=b)=(\lambda x . \text { if } x=a \text { then } b \text { else } f x)
$$

8 IMP
Big Step Semantics
Small Step Semantics

## Big step semantics

Concrete syntax:

$$
(\text { com }, \text { initial-state }) \Rightarrow \text { final-state }
$$

Intended meaning of $(c, s) \Rightarrow t$ :
Command $c$ started in state $s$ terminates in state $t$
$" \Rightarrow$ " here not type!

## Big step rules

$(S K I P, s) \Rightarrow s$

$$
\begin{aligned}
& (x::=a, s) \Rightarrow s(x:=\text { avar } a s) \\
& \frac{\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \quad\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}{\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3}}
\end{aligned}
$$

## Big step rules

$$
\begin{gathered}
\frac{\text { bval b s } \quad\left(c_{1}, s\right) \Rightarrow t}{\left(\text { IF } b \text { THEN } c_{1} E L S E c_{2}, s\right) \Rightarrow t} \\
\frac{\neg \text { bval b } s \quad\left(c_{2}, s\right) \Rightarrow t}{\left(\text { IF } b \text { THEN } c_{1} E L S E \quad c_{2}, s\right) \Rightarrow t}
\end{gathered}
$$

## Big step rules

$$
\begin{gathered}
\frac{\neg b v a l b s}{(W H I L E b D O c, s) \Rightarrow s} \\
\frac{\left(c, s_{1}\right) \Rightarrow s_{2} \quad\left(W H I L E b D O c, s_{2}\right) \Rightarrow s_{3}}{\left(W H I L E b D O c, s_{1}\right) \Rightarrow s_{3}}
\end{gathered}
$$

## Examples: derivation trees

$\overline{(0::=N 5 ; 1::=V 0, s) \Rightarrow ?}$

where $w=$ WHILE $b$ DO $c$

$$
\begin{aligned}
& b=\operatorname{NotEq}\left(\begin{array}{ll}
V & 0
\end{array}\left(\begin{array}{ll}
N & 2
\end{array}\right)\right. \\
& c=0::=\operatorname{Plus}\left(\begin{array}{ll}
V & 0
\end{array}\right)\left(\begin{array}{l}
N
\end{array}\right)
\end{aligned}
$$

NotEq $a_{1} a_{2}=$
$\operatorname{Not}\left(\operatorname{And}\left(\operatorname{Not}\left(\right.\right.\right.$ Less $\left.\left.a_{1} a_{2}\right)\right)\left(\operatorname{Not}\left(\right.\right.$ Less $\left.\left.\left.a_{2} a_{1}\right)\right)\right)$
and $s_{i}$ is " $\{0 \mapsto i\}$ " (formally: $s_{i}=n t h[i]$ ).

## Logically speaking

$$
(c, s) \Rightarrow t
$$

is just infix syntax for

$$
\text { big_step }(c, s) t
$$

where

$$
\text { big_step }:: \text { com } \times \text { state } \Rightarrow \text { state } \Rightarrow \text { bool }
$$

is an inductively defined predicate.

## Big_Step.thy

Semantics

## Rule inversion

What can we deduce from

- $(S K I P, s) \Rightarrow t$ ?
- $(x::=a, s) \Rightarrow t$ ?
- $\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3}$ ?
- (IF b THEN $\left.c_{1} E L S E c_{2}, s\right) \Rightarrow t$ ?
- $(w, s) \Rightarrow t$ where $w=$ WHILE b DO $c$ ?

How are these inversions proved?
By case distinction:
Which rules could have derived $(c, s) \Rightarrow t$, and under which conditions?

Automatic proof via inductive_cases
Produces an optimized format: elimination rules

We reformulate the inverted rules. Example:

$$
\frac{\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3}}{\exists s_{2} .\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \wedge\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}
$$

is logically equivalent to the more convenient

$$
\begin{gathered}
\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3} \\
\frac{\bigwedge s_{2} \cdot \llbracket\left(c_{1}, s_{1}\right) \Rightarrow s_{2} ;\left(c_{2}, s_{2}\right) \Rightarrow s_{3} \rrbracket \Longrightarrow P}{P}
\end{gathered}
$$

Replaces assm $\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3}$ by two assms $\left(c_{1}, s_{1}\right) \Rightarrow s_{2}$ and $\left(c_{2}, s_{2}\right) \Rightarrow s_{3}$ (with a new fixed $s_{2}$ ). No $\exists$ and $\wedge$ !

Similar for all other inverted rules

The general format: elimination rules

$$
\frac{\operatorname{asm} \quad a s m_{1} \Longrightarrow P \quad \ldots \quad a s m_{n} \Longrightarrow P}{P}
$$

(possibly with $\bigwedge \bar{x}$ in front of the $a s m_{i} \Longrightarrow P$ )
Reading:
To prove a goal $P$ with assumption asm, prove all $\operatorname{asm}_{i} \Longrightarrow P$

Example:

$$
\underline{F \vee G \quad F \Longrightarrow P} \underset{P}{ } P \quad G \Longrightarrow P
$$

## elim attribute

- Theorems with elim attribute are used automatically by blast, fastsimp and auto
- Can also be added locally, eg (blast elim: ...)
- Variant: elim! applies elim-rules eagerly.


## Big_Step.thy

Rule inversion

## Command equivalence

Two commands have the same input/output behaviour:

$$
c \sim c^{\prime} \equiv\left(\forall s t .(c, s) \Rightarrow t \longleftrightarrow\left(c^{\prime}, s\right) \Rightarrow t\right)
$$

## Example

$$
w \sim i w
$$

where $w=$ WHILE $b D O c$

$$
i w=I F b \text { THEN } c ; w E L S E S K I P
$$

A derivation-based proof:
transform any derivation of $(w, s) \Rightarrow t$
into a derivation of $(i w, s) \Rightarrow t$,
and vice versa.

## A formula-based proof

$$
(w, s) \Rightarrow t
$$



$$
\begin{gathered}
\text { bval b } s \wedge\left(\exists s^{\prime} .(c, s) \Rightarrow s^{\prime} \wedge\left(w, s^{\prime}\right) \Rightarrow t\right) \\
\vee \text { bval bs} \wedge t=s
\end{gathered}
$$



$$
(i w, s) \Rightarrow t
$$

Using the rules and rule inversions for $\Rightarrow$.

# Big_Step.thy 

## Command equivalence

## Execution is deterministic

Any two executions of the same command in the same start state lead to the same final state:

$$
(c, s) \Rightarrow t \Longrightarrow(c, s) \Rightarrow t^{\prime} \Longrightarrow t=t^{\prime}
$$

Proof by rule induction, for arbitrary $t^{\prime}$.

## Big_Step.thy

## Execution is deterministic

## The boon and bane of big steps

We cannot observe intermediate states/steps
Example problem:
$(c, s)$ does not terminate iff $\nexists t .(c, s) \Rightarrow t$ ?
Needs a formal notion of nontermination to prove it. Could be wrong if we have forgotten $a \Rightarrow$ rule.

Big step semantics cannot directly describe

- nonterminating computations,
- parallel computations.

We need a finer grained semantics!

## 8 IMP

## Big Step Semantics

Small Step Semantics

## Small step semantics

Concrete syntax:

$$
(\text { com,state }) \rightarrow(\text { com }, \text { state })
$$

Intended meaning of $(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right)$ :
The first step in the execution of $c$ in state $s$ leaves a "remainder" command $c$ ' to be executed in state $s^{\prime}$.

Execution as finite or infinite reduction:

$$
\left(c_{1}, s_{1}\right) \rightarrow\left(c_{2}, s_{2}\right) \rightarrow\left(c_{3}, s_{3}\right) \rightarrow \ldots
$$

## Terminology

- A pair $(c, s)$ is called a configuration.
- If $c s \rightarrow c s^{\prime}$ we say that $c s$ reduces to $c s^{\prime}$.
- A configuration $c s$ is final iff $\nexists c s^{\prime} . c s \rightarrow c s^{\prime}$

The intention:

## $(S K I P, s)$ is final

## Why?

SKIP is the empty program. Nothing more to be done.

## Small step rules

$$
(x::=a, s) \rightarrow(S K I P, s(x:=\text { aval a } s))
$$

$(S K I P ; c, s) \rightarrow(c, s)$

$$
\frac{\left(c_{1}, s\right) \rightarrow\left(c_{1}^{\prime}, s^{\prime}\right)}{\left(c_{1} ; c_{2}, s\right) \rightarrow\left(c_{1}^{\prime} ; c_{2}, s^{\prime}\right)}
$$

## Small step rules

$$
\begin{gathered}
\frac{b v a l b s}{\left(\text { IF } b \text { THEN } c_{1} E L S E c_{2}, s\right) \rightarrow\left(c_{1}, s\right)} \\
\frac{\neg \text { bval b } s}{\left(\text { IF b THEN } c_{1} \text { ELSE } c_{2}, s\right) \rightarrow\left(c_{2}, s\right)} \\
(W H I L E \text { b DO } c, s) \rightarrow \\
(\text { IF b THEN } c ; \text { WHILE b DO } c \text { ELSE SKIP, s) }
\end{gathered}
$$

Fact $(S K I P, s)$ is a final configuration.

## Small step examples

$$
(2::=V 0 ; 0::=V 1 ; 1::=V 2, s) \rightarrow \ldots
$$

where $s=n t h[11,13,17]$.

$$
\left(w, s_{0}\right) \rightarrow \ldots
$$

where $w=$ WHILE $b$ DO $c$

$$
b=\operatorname{Less}\left(\begin{array}{ll}
V & 0
\end{array}\right)\left(\begin{array}{ll}
N 1
\end{array}\right)
$$

$$
c=0::=\operatorname{Plus}\left(\begin{array}{ll}
V & 0
\end{array}\right)\left(\begin{array}{ll}
N & 1
\end{array}\right)
$$

$$
s_{n}=n t h[n]
$$

## Small_Step.thy

Semantics

Are big and small step semantics equivalent?

## From $\Rightarrow$ to $\rightarrow *$

Theorem $c s \Rightarrow t \Longrightarrow c s \rightarrow *(S K I P, t)$
Proof by rule induction (of course on $c s \Rightarrow t$ )

$$
\text { From } \rightarrow * \text { to } \Rightarrow
$$

Theorem $c s \rightarrow *(S K I P, t) \Longrightarrow c s \Rightarrow t$
Needs to be generalized:
Lemma $1 c s \rightarrow * c s^{\prime} \Longrightarrow c s^{\prime} \Rightarrow t \Longrightarrow c s \Rightarrow t$
Now Theorem follows from Lemma 1 by $(S K I P, t) \Rightarrow t$. Lemma 1 is proved by rule induction on $c s \rightarrow * c s^{\prime}$. Needs

Lemma $2 c s \rightarrow c s^{\prime} \Longrightarrow c s^{\prime} \Rightarrow t \Longrightarrow c s \Rightarrow t$ Lemma 2 is proved by rule induction on $c s \rightarrow c s^{\prime}$.

## Equivalence

Corollary $c s \Rightarrow t \longleftrightarrow c s \rightarrow *(S K I P, t)$

## Small_Step.thy

## Equivalence of big and small

## Can execution stop prematurely?

That is, are there any final configs except $(S K I P, s)$ ?
Lemma final $(c, s) \Longrightarrow c=S K I P$
We prove the contrapositive $(c \neq S K I P \Longrightarrow \neg$ final $(c, s)$ )
by induction on $c$.

- Case $c_{1} ; c_{2}$ : by case distinction:
- $c_{1}=$ SKIP $\Longrightarrow \neg \operatorname{final}\left(c_{1} ; c_{2}, s\right)$
- $c_{1} \neq$ SKIP $\Longrightarrow \neg \operatorname{final}\left(c_{1}, s\right)$ (by IH)
$\Longrightarrow \neg \operatorname{final}\left(c_{1} ; c_{2}, s\right)$
- Remaining cases: trivial or easy

By rule inversion: $(S K I P, s) \rightarrow c t \Longrightarrow$ False
Together:
Corollary final $(c, s)=(c=S K I P)$

## Infinite executions

## $\Rightarrow$ yields final state iff $\rightarrow$ terminates

Lemma $(\exists t . c s \Rightarrow t)=\left(\exists c s^{\prime} . c s \rightarrow * c s^{\prime} \wedge\right.$ final $\left.c s^{\prime}\right)$
Proof: $\quad(\exists t . c s \Rightarrow t)$
$=(\exists t . c s \rightarrow *(S K I P, t))$
(by big $=$ small)
$=\left(\exists c s^{\prime} . c s \rightarrow * c s^{\prime} \wedge\right.$ final $\left.c s^{\prime}\right)$ (by final $=$ SKIP)

Equivalent:
$\Rightarrow$ does not yield final state iff $\rightarrow$ does not terminate

## May versus Must

$\rightarrow$ is deterministic:
Lemma $c s \rightarrow c s^{\prime} \Longrightarrow \quad c s \rightarrow c s^{\prime \prime} \quad \Longrightarrow \quad c s^{\prime \prime}=c s^{\prime}$ (Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating $\rightarrow$ path)
must terminate (all $\rightarrow$ paths terminate)
Therefore: $\Rightarrow$ correctly reflects termination behaviour.
With nondeterminism: may have both $c s \Rightarrow t$ and a nonterminating reduction $c s \rightarrow c s^{\prime} \rightarrow \ldots$

## 8 IMP

(9) Compiler
(10) A Typed Version of IMP
(9) Compiler Stack Machine Compiler

## Stack Machine

Instructions:
datatype instr $=$
PUSH_N nat
PUSH_V nat $A D D \mid$
STORE nat |
JMPF nat
JMPB nat
JMPFLESS nat |
JMPFGE nat

## store

jump fwd
jump bwd
jump fwd if $<$
jump fwd if $\geq$

Type abbreviations:

$$
\begin{aligned}
\text { stack } & =\text { nat list } \\
\text { config } & =\text { nat } \times \text { state } \times \text { stack }
\end{aligned}
$$

## Execution of 1 instruction:

$$
\begin{aligned}
& P \vdash(p c, s, \text { stk }) \rightarrow\left(p c^{\prime}, s^{\prime}, \text { stk }\right) \\
& \quad \text { instr list } \vdash \text { config } \rightarrow \text { config }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i<|P| \quad P!i=P U S H_{-} N n}{P \vdash(i, s, s t k) \rightarrow(i+1, s, n \# s t k)} \\
& \frac{i<|P| \quad P!i=P U S H_{-} V x}{P \vdash(i, s, s t k) \rightarrow(i+1, s, s x \# s t k)} \\
& \frac{i<|P| \quad P!i=A D D}{P \vdash(i, s, s t k) \rightarrow(i+1, s,(h d 2 s t k+h d s t k) \# t l 2 ~ s t k)} \\
& \quad i<|P| \quad P!i=S T O R E n \\
& \hline P \vdash(i, s, s t k) \rightarrow(i+1, s(n:=h d s t k), t l s t k)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i<|P| \quad P!i=J M P F n}{P \vdash(i, s, s t k) \rightarrow(i+1+n, s, s t k)} \\
& \frac{i<|P| \quad P!i=J M P B n \quad n \leq i+1}{P \vdash(i, s, s t k) \rightarrow(i+1-n, s, s t k)} \\
& \frac{i<|P| \quad P!i=J M P F L E S S}{} \\
& \hline P \vdash(i, s, s t k) \rightarrow\left(i^{\prime}, s, \text { tl2 stk }\right)
\end{aligned}
$$

where
$i^{\prime}=($ if $h d 2$ stk $<h d$ stk then $i+1+n$ else $i+1)$
$J M P F G E$ : analogous

Defined in the usual manner:

$$
P \vdash(p c, s, s t k) \rightarrow *\left(p c^{\prime}, s^{\prime}, s t k^{\prime}\right)
$$

## Compiler.thy

Stack Machine

(9) Compiler

## Stack Machine <br> Compiler

## Compiling aexp

## Same as before:

$$
\begin{aligned}
& \operatorname{acomp}(N n)=\left[P U S H_{-} N n\right] \\
& \operatorname{acomp}(V n)=\left[P U S H_{-} V n\right] \\
& \operatorname{acomp}\left(P l u s \quad a_{1} a_{2}\right)=\operatorname{acomp} a_{1} @ \operatorname{acomp} a_{2} @[A D D]
\end{aligned}
$$

Correctness theorem:
acomp $a \vdash(0, s, s t k) \rightarrow *(|\operatorname{acomp} a|, s$, aval a $s \#$ stk $)$
Proof by induction on $a$ (with arbitrary $s t k$ ).
Needs lemmas!
$P \vdash c \rightarrow * c^{\prime} \Longrightarrow P @ P^{\prime} \vdash c \rightarrow * c^{\prime}$
$P \vdash(i, s, s t k) \rightarrow *\left(i^{\prime}, s^{\prime}, s t k^{\prime}\right) \Longrightarrow$
$P^{\prime} @ P \vdash\left(\left|P^{\prime}\right|+i, s, s t k\right) \rightarrow *\left(\left|P^{\prime}\right|+i^{\prime}, s^{\prime}, s t k^{\prime}\right)$
Proofs by rule induction on $\rightarrow *$, using the corresponding single step lemmas:
$P \vdash c \rightarrow c^{\prime} \Longrightarrow P @ P^{\prime} \vdash c \rightarrow c^{\prime}$
$P \vdash(i, s, s t k) \rightarrow\left(i^{\prime}, s^{\prime}, s t k^{\prime}\right) \Longrightarrow$
$P^{\prime} @ P \vdash\left(\left|P^{\prime}\right|+i, s, s t k\right) \rightarrow\left(\left|P^{\prime}\right|+i^{\prime}, s^{\prime}, s t k^{\prime}\right)$
Proofs by cases/induction.

## Compiling bexp

Let $i n s$ be the compilation of $b$ :

## Do not put value of $b$ on the stack

but let value of $b$ determine where execution of ins ends.
Principle:

- Either execution leads to the end of ins
- or it jumps to offset $+n$ beyond ins.

Parameters: when to jump (if $b$ is True or False) where to jump to ( $n$ )

$$
\text { bcomp }:: \text { bexp } \Rightarrow \text { bool } \Rightarrow \text { nat } \Rightarrow \text { instr list }
$$

## Example

Let $b=$
And (Less (llo) (V 1)) (Not (Less (V 2) (V 3))).
bcomp b False 3 =
[PUSH_V 0, PUSH_V 1,

PUSH_V 2, PUSH_V 3,

$$
\text { bcomp }:: \text { bexp } \Rightarrow \text { bool } \Rightarrow \text { nat } \Rightarrow \text { instr list }
$$

bcomp $(B v)$ c $n=($ if $v=c$ then $[J M P F n]$ else []$)$
comp (Not b) c $n=b c o m p b(\neg c) n$
comp (Less $a_{1} a_{2}$ ) c $n=$
acomp $a_{1} @$
comp $a_{2} @$
(if $c$ then [JMPFLESS n] else [JMPFGE n])
bcomp (And $\left.b_{1} b_{2}\right)$ с $n=$
let $c b_{2}=b c o m p b_{2}$ c $n$;
$m=$ if $c$ then $\left|c b_{2}\right|$ else $\left|c b_{2}\right|+n ;$
$c b_{1}=b c o m p b_{1}$ False $m$
in $c b_{1} @ c b_{2}$

## Correctness of bcomp

$$
\begin{aligned}
& \text { bcomp b c } n \\
& \vdash(0, s, s t k) \rightarrow * \\
& \quad(|b c o m p ~ b c c n|+(\text { if } c=b v a l ~ b s \text { then } n \text { else } 0), s, \\
& \quad \text { stk })
\end{aligned}
$$

## Compiling com

ccomp :: com $\Rightarrow$ instr list
ccomp $S K I P=[]$
$\operatorname{ccomp}(x::=a)=a \operatorname{comp} a @[S T O R E x]$
$\operatorname{ccomp}\left(c_{1} ; c_{2}\right)=\operatorname{ccomp} c_{1} @ \operatorname{ccomp} c_{2}$
ccomp (IF b THEN $c_{1}$ ELSE $c_{2}$ ) $=$
let $c c_{1}=\operatorname{ccomp} c_{1} ; c c_{2}=\operatorname{ccomp} c_{2}$;

$$
c b=b c o m p ~ b \text { False }\left(\left|c c_{1}\right|+1\right)
$$

in $c b$ @ $c c_{1} @ J M P F\left|c c_{2}\right| \# c c_{2}$
ccomp $($ WHILE b DO c) $=$
let $c c=$ ccomp $c ; c b=$ bcomp b False $(|c c|+1)$ in $c b$ @ $c c @[J M P B(|c b|+|c c|+1)]$

## Correctness of ccomp

If the source code produces a certain result, so should the compiled code:
$(c, s) \Rightarrow t \Longrightarrow$
ccomp $c \vdash(0, s, s t k) \rightarrow *(\mid$ ccomp $c \mid, t, s t k)$
Proof by rule induction.

## The other direction

We have only shown compiled code simulates source code.

How about $\Longleftarrow$ :
source code simulates compiled code?
If ccomp $c$ produces result $t$, and if $(c, s) \Rightarrow t^{\prime}$, then $\Longrightarrow$ implies that ccomp $c$ must also produce $t^{\prime}$ and thus $t^{\prime}=t$ (why?).
But we have not ruled out this potential error:
$c$ does not terminate but ccomp $c$ does.
We stop here.

## 8 IMP

## (9) Compiler

(10) A Typed Version of IMP
(10) A Typed Version of IMP Remarks on Type Systems Typed IMP: Semantics Typed IMP: Type System Type Safety of Typed IMP

## Why Types?

To prevent mistakes, dummy!

## There are 3 kinds of types

The Good Static types that guarantee absence of certain runtime faults.
Example: no memory access errors in Java.
The Bad Static types that have mostly decorative value but do not guarantee anything at runtime. Example: C, C++
The Ugly Dynamic types that detect errors when it can be too late.
Example: "Message not understood" in Smalltalk.

## The ideal

Well-typed programs cannot go wrong.
Robin Milner, A Theory of Type Polymorphism in Programming, 1978.

The most influential slogan and one of the most influential papers in programming language theory.

## What could go wrong?

(1) Corruption of data
(2) Null pointer exception
(3) Nontermination
(4) Run out of memory
© Secret leaked
© and many more...
There are type systems for everything (and more) but in practice (Java, C\#) only 1 is covered.

## Type safety

A programming language is type safe if the execution of a well-typed program cannot lead to certain errors.

Java and the JVM have been proved to be type safe. (Note: Java exceptions are not errors!)

## Correctness and completeness

Type soundness means that the type system is sound/correct w.r.t. the semantics:

If the type system says yes,
the semantics does not lead to an error.
The semantics is the primary definition, the type system must be justified w.r.t. it.

How about completeness? Remember Rice:
Nontrivial semantic properties of programs
(e.g. termination) are undecidable.

Hence there is no (decidable) type system that accepts all programs that have a certain semantic property.

Automatic analysis of semantic program properties is necessarily incomplete.
(10) A Typed Version of IMP

Remarks on Type Systems
Typed IMP: Semantics
Typed IMP: Type System Type Safety of Typed IMP

## Arithmetic

Values:
datatype val $=I v$ int $\mid R v$ real
The state:
state $=$ name $\Rightarrow$ val
Arithmetic expresssions:
datatype $a e x p=$

$$
\text { Ic int } \mid \text { Rc real } \mid V \text { name } \mid \text { Plus aexp aexp }
$$

## Why tagged values?

Because we want to detect if things "go wrong". What can go wrong? Adding integer and real! No automatic coercions.
Does this mean any implementation of IMP also needs to tag values?
No! Compilers compile only well-typed programs, and well-typed programs do not need tags.

Tags are only used to detect certain errors and to prove that the type system avoids those errors.

## Evaluation of aexp

Not recursively function but inductive predicate:

$$
\begin{aligned}
& \text { taval }:: \text { aexp } \Rightarrow \text { state } \Rightarrow \text { val } \Rightarrow \text { bool } \\
& \text { taval (Ic i) s (Ivi) } \\
& \text { taval (Rcr)s(Rvr) } \\
& \text { taval }(V x) s(s x) \\
& \left.\frac{\text { taval } a_{1} s\left(\begin{array}{ll}
\text { Iv } i_{1}
\end{array}\right) \quad \text { taval } a_{2} s\left(\operatorname{Iv} i_{2}\right)}{\text { taval }(\text { Plus }} a_{1} a_{2}\right) s\left(\operatorname{Iv}\left(i_{1}+i_{2}\right)\right), ~ \\
& \frac{\text { taval } a_{1} s\left(R v r_{1}\right) \quad \text { taval } a_{2} s\left(R v r_{2}\right)}{\text { taval }\left(P l u s a_{1} a_{2}\right) s\left(R v\left(r_{1}+r_{2}\right)\right)}
\end{aligned}
$$


If $s 0=I v i$ :
$\frac{\operatorname{taval}(\operatorname{VO}) s(\operatorname{Iv} i) \quad \text { taval (Ic 1) } s(\text { Iv 1) }}{\operatorname{taval}(\text { Plus }(\text { V 0) }(\text { Ic 1) }) s(\operatorname{Iv}(i+1))}$
If $s 0=R v r$ : then there is no value $v$ such that taval (Plus (V 0) (Ic 1)) s v.

## The functional alternative

An extremely useful datatype:
datatype 'a option $=$ None $\mid$ Some 'a
A "partial" function:

$$
\text { taval }:: \text { aexp } \Rightarrow \text { state } \Rightarrow \text { val option }
$$

Exercise!

## Boolean expressions

Defined as usual.

$$
\text { tbval }:: \text { bexp } \Rightarrow \text { state } \Rightarrow \text { bool } \Rightarrow \text { bool }
$$

$$
\begin{gathered}
\text { tbval }(B \text { bv }) s \text { bv } \frac{t b v a l b s v}{\text { tbval }(N o t b) s(\neg b v)} \\
\frac{t b v a l b_{1} s b v_{1} \quad t b v a l b_{2} s b v_{2}}{t b v a l\left(A n d b_{1} b_{2}\right) s\left(b v_{1} \wedge b v_{2}\right)} \\
\left.\frac{\text { taval } a_{1} s\left(I v i_{1}\right)}{t b v a l(L e s s} a_{1} a_{2}\right) s\left(i_{1}<i_{2}\right)
\end{gathered}
$$

## com: big or small steps?

We need to detect if things "go wrong".

- Big step semantics:

Cannot model error by absence of final state.
Would confuse error and nontermination.
Could introduce an extra error-element, e.g.
big_step $::$ com $\times$ state $\Rightarrow$ state option $\Rightarrow$ bool
Complicates formalization.

- Small step semantics: error $=$ semantics gets stuck


## Small step semantics

$$
\begin{gathered}
\frac{\text { taval a s } v}{(x::=a, s) \rightarrow(S K I P, s(x:=v))} \\
\frac{\text { tbval b s True }}{\left(\text { IF b THEN } c_{1} E L S E \quad c_{2}, s\right) \rightarrow\left(c_{1}, s\right)} \\
\frac{\text { tbval b s False }}{\left(\text { IF b THEN } c_{1} E L S E ~ c_{2}, s\right) \rightarrow\left(c_{2}, s\right)}
\end{gathered}
$$

The other rules remain unchanged.

## Example

Let $c=(x::=$ Plus ( $V$ 0) (Ic 1) ).

- If $s 0=I v i:(c, s) \rightarrow(S K I P, s(x:=I v(i+1)))$
- If $s 0=R v r:(c, s) \nrightarrow$
(10) A Typed Version of IMP Remarks on Type Systems Typed IMP: Semantics
Typed IMP: Type System Type Safety of Typed IMP


## Type system

There are two types:
datatype $t y=I t y \mid R t y$
What is the type of Plus ( $V 0$ ) $\binom{V}{1}$ ?
Depends on the type of $V 0$ and $V 1$ !
A type environment maps variable names to their types: tyenv $=n a m e \Rightarrow t y$

The type of an expression is always relative to / in the context of a type enviroment $\Gamma$. Standard notation:

$$
\Gamma \vdash e: \tau
$$

## The type of an exp

$$
\begin{gathered}
\Gamma \vdash a: \tau \\
\text { tyenv } \vdash a \exp : \text { ty }
\end{gathered}
$$

The rules:

$$
\begin{gathered}
\Gamma \vdash I c i: \text { Ity } \\
\Gamma \vdash \text { Rc } r: \text { Rty } \\
\Gamma \vdash V x: \Gamma x \\
\frac{\Gamma \vdash a_{1}: \tau \quad \Gamma \vdash a_{2}: \tau}{\Gamma \vdash \text { Plus } a_{1} a_{2}: \tau}
\end{gathered}
$$

## Example


where $\Gamma 0=$ Ity.

## Well-typed bexp

Notation:

$$
\begin{gathered}
\Gamma \vdash b \\
\text { tyenv } \vdash \text { bexp }
\end{gathered}
$$

Read: In context $\Gamma, b$ is well-typed.

The rules:

$$
\begin{gathered}
\Gamma \vdash B b v \\
\frac{\Gamma \vdash b}{\Gamma \vdash N o t b} \\
\frac{\Gamma \vdash b_{1} \quad \Gamma \vdash b_{2}}{\Gamma \vdash \text { And } b_{1} b_{2}} \\
\frac{\Gamma \vdash a_{1}: \tau \quad \Gamma \vdash a_{2}: \tau}{\Gamma \vdash \text { Less } a_{1} a_{2}}
\end{gathered}
$$

Example: $\Gamma \vdash$ Less (Ic i) (Rc r)

## Well-typed commands

## Notation:

$$
\begin{gathered}
\Gamma \vdash c \\
\text { tyenv } \vdash \mathrm{com}
\end{gathered}
$$

Read: In context $\Gamma, c$ is well-typed.

The rules:

$$
\begin{gathered}
\Gamma \vdash S K I P \\
\frac{\Gamma \vdash a: \Gamma x}{\Gamma \vdash x::=a} \\
\frac{\Gamma \vdash c_{1} \quad \Gamma \vdash c_{2}}{\Gamma \vdash c_{1} ; c_{2}} \\
\frac{\Gamma \vdash b \quad \Gamma \vdash c_{1} \quad \Gamma \vdash c_{2}}{\Gamma \vdash I F b \text { THEN } c_{1} E L S E c_{2}} \\
\frac{\Gamma \vdash b \quad \Gamma \vdash c}{\Gamma \vdash W H I L E b D O c}
\end{gathered}
$$

## Interlude: Rule formats

Let $P(t)$ be an inductively defined predicate (e.g. well-typedness) such that

- $t$ is of some syntactic type (e.g. aexp), i.e. some datatype, and
- the definition is executable, i.e. the output (e.g. the type) is computable from the input $t$ by backchaining.
All our semantics and type systems have this property.

The definition of $P$ is

- syntax directed if there is exactly one rule for each syntactic construct.
$\Longrightarrow$ no backtracking needed during execution
- compositional if $P\left(c t_{1} \ldots t_{n}\right)$ depends only on $P\left(t_{1}\right), \ldots, P\left(t_{n}\right)$.
$\Longrightarrow$ execution always terminates (if the rules do not use other nonterminating predicates)
$\Longrightarrow$ A syntax directed, compositional definition of $P(t)$ allows execution in $|t|$ many backchaining steps.

$$
\begin{array}{ccc}
A_{1} & \ldots & A_{n} \\
\hline & B
\end{array}
$$

is invertible if

$$
\frac{B}{A_{1} \wedge \ldots \wedge A_{n}}
$$

also holds.
Which of our type systems consist only of invertible rules?

A syntax directed, compositional definition which consists only of invertible rules can be defined as a recursive function by considering each rule as an equation.

## A recursive definition of $\Gamma \vdash c$

$$
\begin{array}{ll}
\Gamma \vdash S K I P & \longleftrightarrow \\
\Gamma \vdash x::=a & \longleftrightarrow \Gamma \vdash a: \Gamma x \\
\Gamma \vdash c_{1} ; c_{2} & \longleftrightarrow \Gamma \vdash c_{1} \wedge \Gamma \vdash c_{2} \\
\Gamma \vdash I F b \text { THEN } c_{1} E L S E c_{2} & \longleftrightarrow \\
& \Gamma \vdash b \wedge \Gamma \vdash c_{1} \wedge \Gamma \vdash c_{2} \\
& \\
\Gamma \vdash \text { WHILE } b D O c & \longleftrightarrow \Gamma \vdash b \wedge \Gamma \vdash c
\end{array}
$$

Is easier to use than traditional inductive one.
(10) A Typed Version of IMP Remarks on Type Systems Typed IMP: Semantics Typed IMP: Type System Type Safety of Typed IMP

## Well-typed states

Even well-typed programs can get stuck...
... if they start in a bad state.
Remember:
If $s 0=R v r$ then $(x::=$ Plus (V0) (Ic 1), s) $\nrightarrow$
The state must be well-typed w.r.t. $\Gamma$.
Frequent alternative terminology:
The state must conform to $\Gamma$.

The type of a value:
type $(I v i)=$ Ity
type $(R v r)=R t y$
Well-typed state:
$(\Gamma \vdash s)=(\forall x$.type $(s x)=\Gamma x)$

## Type soundness

Reduction cannot get stuck:
If everything is ok ( $\Gamma \vdash s, \Gamma \vdash c$ ),
and you take a finite number of steps,
and you have not reached SKIP, then you can take one more step.

Follows from progress:
If everything is ok and you have not reached SKIP, then you can take one more step.
and preservation:
If everything is ok and you take a step, then everything is ok again.

## The slogan

## Progress $\wedge$ Preservation $\Longrightarrow$ Type safety

Progress Well-typed programs do not get stuck.
Preservation Well-typedness is preserved by reduction.
Preservation: Well-typedness is an invariant.

Progress:
$\llbracket \Gamma \vdash c ; \Gamma \vdash s ; c \neq S K I P \rrbracket \Longrightarrow \exists c s^{\prime} .(c, s) \rightarrow c s^{\prime}$
Preservation:
$\llbracket(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) ; \Gamma \vdash c ; \Gamma \vdash s \rrbracket \Longrightarrow \Gamma \vdash s^{\prime}$
$\llbracket(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) ; \Gamma \vdash c \rrbracket \Longrightarrow \Gamma \vdash c^{\prime}$
Type soundness:

$$
\begin{aligned}
& \llbracket(c, s) \rightarrow *\left(c^{\prime}, s^{\prime}\right) ; \Gamma \vdash c ; \Gamma \vdash s ; c^{\prime} \neq S K I P \rrbracket \\
& \Longrightarrow \exists c s^{\prime \prime} .\left(c^{\prime}, s^{\prime}\right) \rightarrow c s^{\prime \prime}
\end{aligned}
$$

## Progress:

$$
\llbracket \Gamma \vdash b ; \Gamma \vdash s \rrbracket \Longrightarrow \exists v . \text { tbval } b s v
$$

## aехр

## Progress:

$\llbracket \Gamma \vdash a: \tau ; \Gamma \vdash s \rrbracket \Longrightarrow \exists v$. taval a s $v$
Preservation:
$\llbracket \Gamma \vdash a: \tau ;$ taval a s $v ; \Gamma \vdash s \rrbracket \Longrightarrow$ type $v=\tau$

All proofs by rule induction.

Types.thy

## The mantra

Type systems have a purpose:
The static analysis of programs in order to predict their runtime behaviour.

The correctness of the prediction must be provable.

## Part V

Data-Flow Analyses and Optimization

# (11) Definite Assignment Analysis 

(12) Live Variable Analysis

(13) Information Flow Control

# (11) Definite Assignment Analysis 

(12) Live Variable Analysis
(13) Information Flow Control

Each local variable must have a definitely assigned value when any access of its value occurs. A compiler must carry out a specific conservative flow analysis to make sure that, for every access of a local variable $x, x$ is definitely assigned before the access; otherwise a compile-time error must occur.

Java Language Specification
Java was the first language to force programmers to initialize their variables.

Java versus IMP:

- Java has local variables and parameters; parameters are always initialized.
- IMP: we assume that certain variables are initialized before the program starts.


## Examples: ok or not?

Assume $x$ is initialized and $x \neq y$.
IF Less ( $V$ x) ( $N$ 1) THEN $y::=V x$
ELSE $y::=$ Plus (Vx) (N 1);
$y::=$ Plus (Vy) (N 1)
IF Less (V $x$ ) ( $V x$ ) THEN $y::=$ Plus ( $V y$ ) ( $N$ 1)
ELSE $y::=V x$
Assume $x$ and $y$ are initialized and distinct $[x, y, z]$ :
WHILE Less $(V x)(V y) D O z::=V x$;
$z::=$ Plus $(V z)(N 1)$

## Simplifying principle

We do not analyze boolean expressions to determine program execution.
(11) Definite Assignment Analysis Prelude: Variables in Expressions
Definite Assignment Analysis Initialization Sensitive Semantics

Theory Vars provides an overloaded function vars:

```
vars :: aexp => name set
```

vars $(N n)=\emptyset$
$\operatorname{vars}(V x)=\{x\}$
vars $\left(\right.$ Plus $\left.a_{1} a_{2}\right)=$ vars $a_{1} \cup$ vars $a_{2}$
vars $::$ bexp $\Rightarrow$ name set
$\operatorname{vars}(B b v)=\emptyset$
vars $($ Not $b)=$ vars $b$
vars $\left(\right.$ And $\left.b_{1} b_{2}\right)=$ vars $b_{1} \cup$ vars $b_{2}$
vars $\left(\right.$ Less $\left.a_{1} a_{2}\right)=$ vars $a_{1} \cup$ vars $a_{2}$

## Vars.thy

(11) Definite Assignment Analysis

Prelude: Variables in Expressions
Definite Assignment Analysis Initialization Sensitive Semantics

Modified example from the JLS:
Variable $x$ is definitely assigned after SKIP iff $x$ is definitely assigned before SKIP.

Similar statements for each each language construct.
$D::$ name set $\Rightarrow$ com $\Rightarrow$ name set $\Rightarrow$ bool
$D A \subset A^{\prime}$ should imply:
If all variables in $A$ are initialized before $c$ is executed, then no uninitialized variable is accessed during execution, and all variables in $A^{\prime}$ are initialized afterwards.

$$
\begin{gathered}
D A S K I P A \\
\frac{v a r s ~ a \subseteq A}{D A(x::=a)(\{x\} \cup A)} \\
\frac{D A_{1} c_{1} A_{2} \quad D A_{2} c_{2} A_{3}}{D A_{1}\left(c_{1} ; c_{2}\right) A_{3}} \\
\frac{\text { vars } b \subseteq A \quad D A c_{1} A_{1} \quad D A c_{2} A_{2}}{D A\left(I F b \text { THEN } c_{1} E L S E c_{2}\right)\left(A_{1} \cap A_{2}\right)} \\
\frac{\text { vars } b \subseteq A \quad D A c A^{\prime}}{D A(\text { WHILE } b D O c) A}
\end{gathered}
$$

## Correctness of $D$

- Things can go wrong: execution may access uninitialized variable.
$\Longrightarrow$ We need a new, finger grained semantics.
- Big step semantics: semantics longer, correctness proof shorter
- Small step semantics: semantics shorter, correctness proof longer

For variety's sake, we choose a big step semantics.

# (11) Definite Assignment Analysis 

## Prelude: Variables in Expressions <br> Definite Assignment Analysis <br> Initialization Sensitive Semantics

$$
\text { state }=\text { name } \Rightarrow \text { nat option }
$$

where
datatype 'a option $=$ None $\mid$ Some ' $a$
Notation: $s(x \mapsto y)$ means $s(x:=$ Some $y)$
Definition: $\operatorname{dom} s=\{a \mid s a \neq$ None $\}$

## Expression evaluation

aval $::$ aexp $\Rightarrow$ state $\Rightarrow$ val option
$\operatorname{aval}(N i) s=S o m e i$
laval $(V x) s=s x$
aval (Plus $a_{1} a_{2}$ ) $s=$
(case (laval $a_{1} s$, aval $a_{2} s$ ) of
(Some $i_{1}$, Some $i_{2}$ ) $\Rightarrow \operatorname{Some}\left(i_{1}+i_{2}\right)$
| $\quad \Rightarrow$ None)
bval $::$ bexp $\Rightarrow$ state $\Rightarrow$ bool option
oval ( $B$ bu) s=Some bu
oval (Not b) $s=$
(case bval bs of None $\Rightarrow$ None
$\mid$ Some lv $\Rightarrow$ Some ( $\neg b v$ ))
oval $\left(\right.$ And $\left.b_{1} b_{2}\right) s=$
(case (bval $b_{1} s$, oval $b_{2} s$ ) of
(Some bu $v_{1}$, Some $\left.b v_{2}\right) \Rightarrow \operatorname{Some}\left(b v_{1} \wedge b v_{2}\right)$
| $\quad \Rightarrow$ None)
bval (Less $\left.a_{1} a_{2}\right) s=$
(case (laval $a_{1} s$, aval $a_{2} s$ ) of
(Some $i_{1}$, Some $i_{2}$ ) $\Rightarrow \operatorname{Some}\left(i_{1}<i_{2}\right)$
| $\Rightarrow$ None)

## Big step semantics

$$
(\text { com }, \text { state }) \Rightarrow \text { state option }
$$

A small complication:

$$
\begin{gathered}
\left(c_{1}, s_{1}\right) \Rightarrow \text { Some } s_{2} \quad\left(c_{2}, s_{2}\right) \Rightarrow s \\
\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s \\
\frac{\left(c_{1}, s_{1}\right) \Rightarrow \text { None }}{\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow \text { None }}
\end{gathered}
$$

More convenient, because compositional:

$$
(\text { com, state option }) \Rightarrow \text { state option }
$$

Error (None) propagates:

$$
(c, \text { None }) \Rightarrow \text { None }
$$

Execution starting in (mostly) normal states (Some s):

$$
\begin{gathered}
(\text { SKIP, } s) \Rightarrow s \\
\frac{\text { aval a } s=\text { Some } i}{(x::=a, \text { Some } s) \Rightarrow \text { Some }(s(x \mapsto i))} \\
\frac{\text { aval a } s=\text { None }}{(x::=a, \text { Some } s) \Rightarrow \text { None }} \\
\frac{\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \quad\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}{\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3}}
\end{gathered}
$$

bval bs Some True $\quad\left(c_{1}\right.$, Some $\left.s\right) \Rightarrow s^{\prime}$ (IF b THEN $c_{1}$ ELSE $c_{2}$, Some $s$ ) $\Rightarrow s^{\prime}$
oval bs= Some False $\quad\left(c_{2}\right.$, Some $\left.s\right) \Rightarrow s^{\prime}$
(IF b THEN $c_{1}$ ELSE $c_{2}$, Some $\left.s\right) \Rightarrow s^{\prime}$

$$
\text { oval b } s=\text { None }
$$

(IF b THEN $c_{1}$ ELSE $c_{2}$, Some $s$ ) $\Rightarrow$ None

## bval bs=Some False

$\overline{(\text { WHILE b DO } c \text {, Some } s) \Rightarrow \text { Some } s}$

$$
\begin{gathered}
\text { bval bs= Some True } \\
\frac{(c, \text { Some } s) \Rightarrow s^{\prime} \quad\left(\text { WHILE } b D \quad c, s^{\prime}\right) \Rightarrow s^{\prime \prime}}{(\text { WHILE } b \text { DO } c, \text { Some } s) \Rightarrow s^{\prime \prime}} \\
\frac{b v a l ~ b s=\text { None }}{(\text { WHILE bDO } c, \text { Some } s) \Rightarrow \text { None }}
\end{gathered}
$$

## Correctness of $D$ w.r.t. $\Rightarrow$

We want in the end: Well-initialized programs cannot go wrong.

If $D($ dom $s) c A^{\prime}$ and $(c$, Some $s) \Rightarrow s^{\prime}$ then $s^{\prime} \neq$ None.

We need to prove a generalized statement:
If $(c$, Some $s) \Rightarrow s^{\prime}$ and $D A c A^{\prime}$ and $A \subseteq \operatorname{dom} s$ then $\exists t . s^{\prime}=$ Some $t \wedge A^{\prime} \subseteq$ dom $t$.

By rule induction on $(c$, Some $s) \Rightarrow s^{\prime}$.

Proof needs some easy lemmas:

$$
\begin{aligned}
& \text { vars } a \subseteq \operatorname{dom} s \Longrightarrow \exists i . \text { aval a } s=\text { Some } i \\
& \text { vars } b \subseteq \operatorname{dom} s \Longrightarrow \exists \text { bv. bval } b s=\text { Some } b v \\
& D A \text { c } A^{\prime} \Longrightarrow A \subseteq A^{\prime}
\end{aligned}
$$

## (11) Definite Assignment Analysis

(12 Live Variable Analysis

## (13) Information Flow Control

## Motivation

Consider the following program (where $x \neq y$ ):

$$
\begin{aligned}
& x::=\text { Plus (Vy) (N 1); } \\
& y::=N 5 ; \\
& x::=\text { Plus (Vy) (N 3) }
\end{aligned}
$$

The first assignment is redundant and can be removed because $x$ is dead at that point.

Semantically, a variable $x$ is live before command $c$ if the initial value of $x$ can influence the final state.

As a sufficient condition, we call $x$ live before $c$ if there is some potential execution of $c$ where $x$ is read before it is (possibly) written. Implicitly, every variable is read at the end of $c$.

Examples: Is $x$ initially dead or live?
$x::=N 0$
$y::=V x ; y::=N 0 ; x::=N 0$
WHILE b DO y $::=V x ; x::=N 1$

At the end of a command, we may be interested in the value of only some of the variables, e.g. only the global variables at the end of a procedure.

Then we say that $x$ is live before $c$ relative to the set of variables $X$.

## Liveness analysis

$L::$ com $\Rightarrow$ name set $\Rightarrow$ name set

$$
L c X=\text { live before } c \text { relative to } X
$$

$L$ SKIP X $=X$
$L(x::=a) X=X-\{x\} \cup$ vars $a$
$L\left(c_{1} ; c_{2}\right) X=\left(L c_{1} \circ L c_{2}\right) X$
$L\left(I F b T H E N c_{1} E L S E c_{2}\right) X=$
vars $b \cup L c_{1} X \cup L c_{2} X$
$L($ WHILE $b D O c) X=$ vars $b \cup X \cup L c X$
Examples:
$L\left(1::=V\right.$ 2; $0::=$ Plus $\left(\begin{array}{l}\text { V 1 }\end{array}\right)(V$ 2) $)\{0\}=\{2\}$
$L\left(\right.$ WHILE Less $\left(\begin{array}{ll}V & 0\end{array}\right)\left(\begin{array}{ll}V & 0\end{array}\right)$ DO $1::=V$ 2) $\{0\}=\{0, \underset{337}{2}\}$

## Gen/kill analyses

A data-flow analysis $A::$ com $\Rightarrow T$ set $\Rightarrow T$ set is called gen/kill analysis
if there are functions gen and kill such that

$$
A c X=X-\text { kill } c \cup \text { gen } c
$$

Gen/kill analyses are extremely well-behaved, e.g.

$$
\begin{array}{r}
X_{1} \subseteq X_{2} \Longrightarrow A c X_{1} \subseteq A c c X_{2} \\
A c\left(X_{1} \cap X_{2}\right)=A c X_{1} \cap A c c X_{2}
\end{array}
$$

All the "standard" data-flow analyses are gen/kill. In particular liveness analysis.

## Liveness via gen/kill

kill $::$ com $\Rightarrow$ name set
kill SKIP
kill ( $x::=a$ )
kill $\left(c_{1} ; c_{2}\right)$
kill (IF bTHEN $c_{1} E L S E c_{2}$ ) $=$ kill $c_{1} \cap$ kill $c_{2}$ kill (WHILE b DO c)
$=\emptyset$
$=\{x\}$
$=$ kill $c_{1} \cup$ kill $c_{2}$
$=\emptyset$
gen $::$ com $\Rightarrow$ name set
gen SKIP $=\emptyset$
$\operatorname{gen}(x::=a)=$ vars $a$
$\operatorname{gen}\left(c_{1} ; c_{2}\right)=\operatorname{gen} c_{1} \cup\left(\right.$ gen $c_{2}-$ kill $\left.c_{1}\right)$
$\operatorname{gen}\left(I F b\right.$ THEN $\left.c_{1} E L S E c_{2}\right)=$
vars $b \cup$ gen $c_{1} \cup$ gen $c_{2}$
gen $(W H I L E b D O c)=\operatorname{vars} b \cup$ gen $c$

$$
L c X=X-\text { kill } c \cup \text { gen } c
$$

Proof by induction on $c$.
An easy but important consequence for later:

$$
L c(L w X) \subseteq L w X \text { where } w=W H I L E b D O c
$$

Do not try to prove this from the original definition of $L$ !

## Definite assignment via gen/kill

$A c X$ : the set of variables initialized after $c$ if $X$ was initialized before $c$
How to obtain $A c X=X-$ kill $c \cup$ gen $c$ :
gen SKIP
gen $(x::=a)$
gen $\left(c_{1} ; c_{2}\right) \quad=$ gen $c_{1} \cup$ gen $c_{2}$
gen (IF b THEN $c_{1} E L S E c_{2}$ ) $=$ gen $c_{1} \cap$ gen $c_{2}$
gen (WHILE b DO c)
kill $c=\emptyset$
$=\emptyset$
$=\{x\}$
$=$ gen $c_{1} \cup$ gen $c_{2}$
$=$ gen $c_{1} \cap$ gen $c_{2}$
$=\emptyset$
$=\{x\}$

(12) Live Variable Analysis

Soundness of $L$
Dead Variable Elimination
Comparisons
$(.,.) \Rightarrow$. and $L$ should roughly be related like this:
The value of the final state on $X$
only depends on the value of the initial state on $L c X$.

Put differently:
If two initial states agree on $L$ c $X$ then the corresponding final states agree on $X$.

## Equality on

An abbreviation:

$$
f=g \text { on } X \equiv \forall x \in X . f x=g x
$$

Two easy theorems (in theory Vars):

$$
\begin{aligned}
& s_{1}=s_{2} \text { on vars } a \Longrightarrow \text { aval a } s_{1}=\text { aval a } s_{2} \\
& s_{1}=s_{2} \text { on vars } b \Longrightarrow \text { bval } b s_{1}=\text { bval } b s_{2}
\end{aligned}
$$

## Soundness of $L$

$$
\begin{aligned}
& \text { If }(c, s) \Rightarrow s^{\prime} \text { and } s=t \text { on } L c X \\
& \text { then } \exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime} \text { on } X .
\end{aligned}
$$

Proof by rule induction
(12) Live Variable Analysis

Soundness of $L$
Dead Variable Elimination
Comparisons

Bury all assignments to dead variables:
bury $::$ com $\Rightarrow$ name set $\Rightarrow$ com
bury SKIP X $=$ SKIP
bury $(x::=a) X=$ if $x \in X$ then $x::=a$ else SKIP bury $\left(c_{1} ; c_{2}\right) X=$ bury $c_{1}\left(L c_{2} X\right)$; bury $c_{2} X$
bury (IF b THEN $c_{1} E L S E c_{2}$ ) $X=$ IF $b$ THEN bury $c_{1} X$ ELSE bury $c_{2} X$
bury (WHILE b DO c) $X=$
WHILE b DO bury c (vars $b \cup X \cup L$ c $X$ )

## Soundness of bury

$$
(\text { bury } c \text { UNIV }, s) \Rightarrow s^{\prime} \longleftrightarrow(c, s) \Rightarrow s^{\prime}
$$

where $U N I V$ is the set of all variables.
The two directions need to be proved separately.

$$
(c, s) \Rightarrow s^{\prime} \Longrightarrow\left(\text { bury c UNIV, s) } \Rightarrow s^{\prime}\right.
$$

Follows from generalized statement:

$$
\begin{aligned}
& \text { If }(c, s) \Rightarrow s^{\prime} \text { and } s=t \text { on } L c X \\
& \text { then } \exists t^{\prime} .(\text { bury } c X, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime} \text { on } X .
\end{aligned}
$$

Proof by rule induction, like for soundness of $L$.

$$
\text { (bury } c \text { UNIV, s) } \Rightarrow s^{\prime} \Longrightarrow(c, s) \Rightarrow s^{\prime}
$$

Follows from generalized statement:

$$
\begin{aligned}
& \text { If }(\text { bury } c X, s) \Rightarrow s^{\prime} \text { and } s=t \text { on } L c X \\
& \text { then } \exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime} \text { on } X .
\end{aligned}
$$

Proof very similar to other direction, but needs inversion lemmas for bury for every kind of command, e.g.
$\left(b c_{1} ; b c_{2}=\right.$ bury $\left.c X\right)=$
( $\exists c_{1} c_{2}$.

$$
\begin{aligned}
& c=c_{1} ; c_{2} \wedge \\
& \left.b c_{2}=\text { bury } c_{2} X \wedge b c_{1}=\text { bury } c_{1}\left(L c_{2} X\right)\right)
\end{aligned}
$$

## (12) Live Variable Analysis

Soundness of $L$
Dead Variable Elimination
Comparisons

## Comparison of analyses

- Definite assignment analysis is a forward must analysis:
- it analyses the executions starting from some point,
- variables must be assigned (on every program path) before they are used.
- Live variable analysis is a backward may analysis:
- it analyses the executions ending in some point,
- live variables may be used (on some program path) before they are assigned.


## Comparison of DFA frameworks

Program representation:

- Traditionally (e.g. Aho/Sethi/Ullman), DFA is performed on control flow graphs (CFGs). Application: optimization of intermediate or low-level code.
- We analyse structured programs. Application: source-level program optimization.
Algorithm:
- Gen/kill analyses on arbitrary CFGs may require a finite number of iterations before a (least or greatest) solution is reached.
- Gen/kill analyes of structured programs do not require iterations.


## (11) Definite Assignment Analysis

## (12) Live Variable Analysis

(13) Information Flow Control

The aim:
Ensure that programs protect private data like passwords, bank details, or medical records.
There should be no information flow from private data into public channels.

This is know as information flow control.

Language based security is an approach to information flow control where data flow analysis is used to determine whether a program is free of illicit information flows.

LBS guarantees confidentiality by program analysis, not by cryptography.

These analyses are often expressed as type systems.

## Security levels

- Program variables have security/confidentiality levels.
- Security levels are partially ordered: $l<l^{\prime}$ means that $l$ is less confidential than $l^{\prime}$.
- We identify security levels with nat.

Level 0 is public.

- Other popular choices for security levels:
- only two levels, high and low.
- the set of security levels is a lattice.


## Two kinds of illicit flows

Explicit: low := high
Implicit: if high1 = high2 then low := 1 else low := 0

## Noninterference

High variables do not interfere with low ones.
A variation of confidential input does not cause a variation of public output.

Program $c$ guarantees noninterference iff for all $s_{1}, s_{2}$ :
If $s_{1}$ and $s_{2}$ agree on low variables
(but may differ on high variables!), then the states resulting from executing ( $c, s_{1}$ ) and $\left(c, s_{2}\right)$ must also agree on low variables.
(13) Information Flow Control Secure IMP
A Security Type System
A Type System with Subsumption A Bottom-Up Type System
Beyond

## Security levels:

types level $=$ nat
Every variable has a security level:
sec :: name $\Rightarrow$ level
No definition is needed. Except for examples. Hence we define (arbitrarily)
$\sec n=n$

The security level of an expression is the maximal security level of any of its variables.
sec $::$ aexp $\Rightarrow$ level
$\sec (N n)=0$
$\sec (V x)=\sec x$
$\sec \left(\right.$ Plus $\left.a_{1} a_{2}\right)=\max \left(\sec a_{1}\right)\left(\begin{array}{ll}\sec a_{2}\end{array}\right)$
sec $::$ bexp $\Rightarrow$ level
$\sec (B b v)=0$
$\sec ($ Not $b)=\sec b$
$\sec \left(A n d b_{1} b_{2}\right)=\max \left(\sec b_{1}\right)\left(\sec b_{2}\right)$
$\sec \left(\right.$ Less $\left.a_{1} a_{2}\right)=\max \left(\sec a_{1}\right)\left(\sec a_{2}\right)$

Agreement of states up to a certain level:

$$
\begin{aligned}
s_{1}=s_{2}(\leq l) & \equiv \forall x . \sec x \leq l \longrightarrow s_{1} x=s_{2} x \\
s_{1}=s_{2}(<l) & \equiv \forall x . \sec x<l \longrightarrow s_{1} x=s_{2} x
\end{aligned}
$$

Noninterference for expressions:

$$
\begin{aligned}
& \llbracket s_{1}=s_{2}(\leq l) ; \text { sec } a \leq l \rrbracket \Longrightarrow \text { aval a } s_{1}=\text { aval a } s_{2} \\
& \llbracket s_{1}=s_{2}(\leq l) ; \text { sec } b \leq \rrbracket \Longrightarrow \text { bval } b s_{1}=\text { bval } b s_{2}
\end{aligned}
$$

# (13) Information Flow Control 

## Secure IMP

A Security Type System
A Type System with Subsumption A Bottom-Up Type System Beyond

Explicit flows are easy. How to check for implicit flows:
Carry the security level of the boolean expressions around that guard the current command.
The well-typedness predicate:

$$
l \vdash c
$$

Intended meaning:
"In the context of boolean expressions of level $\leq l$, command $c$ is well-typed."
Hence:
"Assignments to variables of level $<l$ are forbidden."

## Well-typed or not?

$0 \vdash I F$ Less ( $V 0$ ) ( $V$ 1) THEN $1::=N 0$ ELSE SKIP
$1 \vdash I F$ Less (V 0) (V 1) THEN $1::=N 0$ ELSE SKIP
2トIF Less (V0) (V1) THEN $1::=N 0$ ELSE SKIP

## The type system

$$
l \vdash S K I P
$$

$$
\frac{\sec a \leq \sec x \quad l \leq \sec x}{l \vdash x::=a}
$$

$$
\frac{l \vdash c_{1} \quad l \vdash c_{2}}{l \vdash c_{1} ; c_{2}}
$$

$$
\begin{gathered}
\frac{\max (\sec b) l \vdash c_{1} \quad \max (\sec b) l \vdash c_{2}}{l \vdash I F b \text { THEN } c_{1} E L S E c_{2}} \\
\frac{\max (\sec b) l \vdash c}{l \vdash W H I L E ~ b D O c}
\end{gathered}
$$

Remark:
$l \vdash c$ is syntax-directed and executable.

## Anti-monotonicity

$$
\frac{l \vdash c \quad l^{\prime} \leq l}{l^{\prime} \vdash c}
$$

Proof by ... as usual.
This is often called a subsumption rule because it says that larger levels subsume smaller ones.

## Confinement

If $l \vdash c$ then $c$ cannot modify variables of level $<l$ :

$$
\frac{(c, s) \Rightarrow t \quad l \vdash c}{s=t(<l)}
$$

The effect of $c$ is confined to variables of level $\geq l$.
Proof by ... as usual.

## Noninterference

$$
\frac{(c, s) \Rightarrow s^{\prime} \quad(c, t) \Rightarrow t^{\prime} \quad 0 \vdash c \quad s=t(\leq l)}{s^{\prime}=t^{\prime}(\leq l)}
$$

Proof by ... as usual.

# (13) Information Flow Control 

## Secure IMP

A Security Type System
A Type System with Subsumption A Bottom-Up Type System Beyond

The $l \vdash c$ system is intuitive and executable

- but in the literature a more elegant formulation is dominant
- which does not need max
- and works for arbitrary partial orders.

This alternative system $l \vdash^{\prime} c$ has an explicit subsumption rule

$$
\frac{l \vdash^{\prime} c \quad l^{\prime} \leq l}{l^{\prime} \vdash^{\prime} c}
$$

together with one rule per construct:

## $l \vdash^{\prime}$ SKIP

$$
\begin{gathered}
\sec a \leq \sec x \quad l \leq \sec x \\
l \vdash^{\prime} x::=a \\
\frac{l \vdash^{\prime} c_{1} \quad l \vdash^{\prime} c_{2}}{l \vdash^{\prime} c_{1} ; c_{2}} \\
\frac{\sec b \leq l \quad l \vdash^{\prime} c_{1} \quad l \vdash^{\prime} c_{2}}{l \vdash^{\prime} I F b T H E N c_{1} E L S E c_{2}} \\
\frac{\sec b \leq l \quad l \vdash^{\prime} c}{l \vdash^{\prime} W H I L E b D O c}
\end{gathered}
$$

- The subsumption-based system $\vdash^{\prime}$ is neither syntax-directed nor directly executable.
- One needs to guess
where to use a subsumption rule in the derivation.


## Equivalence of $\vdash$ and $\vdash^{\prime}$

$$
l \vdash c \Longrightarrow l \vdash^{\prime} c
$$

Proof by induction.
Use subsumption directly below IF and WHILE.

$$
l \vdash^{\prime} c \Longrightarrow l \vdash c
$$

Proof by induction. Subsumption already a lemma for $\vdash$.

# (13) Information Flow Control 

## Secure IMP

A Security Type System
A Type System with Subsumption
A Bottom-Up Type System Beyond

- Systems $l \vdash c$ and $l \vdash^{\prime} c$ are top-down: level $l$ comes from the context and is checked at $::=$ commands.
- System $\vdash c: l$ is bottom-up: $l$ is the minimal level of any variable assigned in $c$ and is checked at $I F$ and WHILE commands.

$$
\begin{gathered}
\vdash \operatorname{SKIP}: l \\
\frac{\sec a \leq \sec x}{\vdash x::=a: \sec x} \\
\vdash \frac{c_{1}: l_{1} \quad \vdash c_{2}: l_{2}}{\vdash c_{1} ; c_{2}: \min l_{1} l_{2}} \\
\frac{\sec b \leq \min l_{1} l_{2} \quad \vdash c_{1}: l_{1} \quad \vdash c_{2}: l_{2}}{\vdash \operatorname{IF} b \operatorname{THEN} c_{1} E L S E c_{2}: \min l_{1} l_{2}} \\
\frac{\sec b \leq l \quad \vdash c: l}{\vdash W H I L E b D O c: l}
\end{gathered}
$$

## Equivalence of $\vdash$ : and $\vdash^{\prime}$

$$
\vdash c: l \Longrightarrow l \vdash^{\prime} c
$$

Proof by induction.

$$
l \vdash^{\prime} c \Longrightarrow \vdash c: l
$$

Nitpick says: $0 \vdash^{\prime} 1::=N 1$ but not $\vdash 1::=N 1: 0$

$$
l \vdash^{\prime} c \Longrightarrow \exists l^{\prime} \geq l . \vdash c: l^{\prime}
$$

Proof by induction.

# (13) Information Flow Control 

## Secure IMP

A Security Type System
A Type System with Subsumption
A Bottom-Up Type System
Beyond

Does noninterference really guarantee absence of information flow?

$$
\frac{(c, s) \Rightarrow s^{\prime} \quad(c, t) \Rightarrow t^{\prime} \quad 0 \vdash c \quad s=t(\leq l)}{s^{\prime}=t^{\prime}(\leq l)}
$$

Beware of covert channels!

$$
0 \vdash \text { WHILE Less }\binom{V}{1}(N \text { 1) DO SKIP }
$$

A drastic solution:

## WHILE-conditions must not depend on confidential data.

New typing rule:

$$
\frac{\sec b=0 \quad 0 \vdash c}{0 \vdash \text { WHILE } b D O c}
$$

Now provable:

$$
\frac{(c, s) \Rightarrow s^{\prime} \quad 0 \vdash c \quad s=t(\leq l)}{\exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime}(\leq l)}
$$

## Further extensions

- Time
- Probability
- Quantitative analysis
- More programming language features:
- exceptions
- concurrency
- OO


## Literature

The inventors of security type systems are Volpano and Smith.

For an excellent survey see
Sabelfeld and Myers. Language-Based Information-Flow Security. 2003.

## Part VI

## Hoare Logic

## (14) Partial Correctness

## (15) Verification Conditions

(16) Totale Correctness

## (14) Partial Correctness

## (15) Verification Conditions

(16) Totale Correctness
(14) Partial Correctness

Introduction
The Syntactic Approach The Semantic Approach Soundness and Completeness

We have proved functional programs correct (e.g. a compiler).

We have proved properties of imperative languages (e.g. type safety).

But how do we prove properties of imperative programs?

An example program:
$0::=N 0 ; 1::=N 0 ; w n$
where
$w n \equiv$
WHILE Less (V 1) (N n)
DO (1 ::=Plus (V 1) (N 1);
$0::=$ Plus (V0) (V1))
At the end of the execution, variable 0 should contain the sum $1+\ldots+n$.

## A proof via operational semantics

Theorem:
( $0::=N 0 ; 1::=N 0 ; w n, s) \Rightarrow t \Longrightarrow$
$t 0=\sum\{1 . . n\}$
Required Lemma:
$(w n, s) \Rightarrow t \Longrightarrow$
$t 0=s 0+\sum\{s 1+1 . . n\}$
Proved by induction.

Hoare Logic provides a structured approach for reasoning about properties of states during program execution:

- Rules of Hoare Logic (almost) syntax directed
- Automates reasoning about program execution
- No explicit induction

But no free lunch:

- Must prove implications between predicates on states
- Needs invariants.
(14) Partial Correctness

Introduction
The Syntactic Approach
The Semantic Approach
Soundness and Completeness

This is the standard approach.
Formulas are syntactic objects.
Everything is very concrete and simple.
But complex to formalize.
Hence we soon move to a semantic view of formulas.
Reason for introduction of syntactic approach: didactic
For now, we work with a (syntactically) simplified version of IMP.

Hoare Logic reasons about Hoare triples $\{P\} c\{Q\}$ where

- $P$ and $Q$ are syntactic formulas involving program variables
- $P$ is the precondition, $Q$ is the postcondition
- $\{P\} c\{Q\}$ means that
if $P$ is true at the start of the execution,
$Q$ is true at the end of the execution
- if the execution terminates! (partial correctness)

Informal example:

$$
\{x=41\} x:=x+1\{x=42\}
$$

Terminology: $P$ and $Q$ are called assertions.

## Examples

$$
\begin{array}{rll}
\{x=5\} & ? & \{x=10\} \\
\{\text { True }\} & ? & \{x=10\} \\
\{x=y\} & ? & \{x \neq y\}
\end{array}
$$

Boundary cases:

$$
\begin{array}{lll}
\{\text { True }\} & ? & \{\text { True }\} \\
\{\text { True }\} & ? & \{\text { False }\} \\
\{\text { False }\} & ? & \{Q\}
\end{array}
$$

## The rules of Hoare Logic

$$
\begin{gathered}
\{P\} \text { SKIP }\{P\} \\
\{Q[a / x]\} x:=a\{Q\}
\end{gathered}
$$

Notation: $Q[a / x]$ means " $Q$ with $a$ substituted for $x^{\prime \prime}$.
$\begin{array}{llll}\text { Examples: } & \{ & \} x:=5 & \{x=5\} \\ & \{ & \} x:=x+5 & \{x=5\} \\ & \{ & \} x:=2 *(x+5) & \{x>20\}\end{array}$
Intuitive explanation of backward-looking rule:

$$
\{Q[a]\} x:=a\{Q[x]\}
$$

Afterwards we can replace all occurrences of $a$ in $Q$ by $x$.

## The assignment axiom allows us

 to compute the precondition from the postcondition.There is a version to compute the postcondition from the precondition, but it is more complicated. (Exercise!)

## More rules of Hoare Logic

$$
\begin{gathered}
\frac{\left\{P_{1}\right\} c_{1}\left\{P_{2}\right\} \quad\left\{P_{2}\right\} c_{2}\left\{P_{3}\right\}}{\left\{P_{1}\right\} c_{1} ; c_{2}\left\{P_{3}\right\}} \\
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \text { IF } b \text { THEN } c_{1} E L S E c_{2}\{Q\}} \\
\frac{\{P \wedge b\} c\{P\}}{\{P\} \text { WHILE } D O c\{P \wedge \neg b\}}
\end{gathered}
$$

In the While-rule, $P$ is called an invariant because it is preserved across executions of the loop body.

## The consequence rule

So far, the rules were syntax-directed. Now we add


Preconditions can be strengthened, postconditions can be weakened.

## Two derived rules

Problem with assignment and While-rule: special form of pre and postcondition.
Better: combine with consequence rule.

$$
\begin{gathered}
\frac{P \longrightarrow Q[a / x]}{\{P\} x:=a\{Q\}} \\
\frac{\{P \wedge b\} c\{P\} \quad P \wedge \neg b \longrightarrow Q}{\{P\} \text { WHILE } b D O c\{Q\}}
\end{gathered}
$$

## Example

$$
\begin{aligned}
& \{\text { True }\} \\
& x:=0 ; y:=0 ; \\
& \text { WHILE } y<n D O(y:=y+1 ; x:=x+y) \\
& \left\{x=\sum\{1 . . n\}\right\}
\end{aligned}
$$

Example proof exhibits key properties of Hoare logic:

- Choice of rules is syntax-directed and hence automatic.
- Proof of ";" proceeds from right to left.
- Proofs require only invariants and arithmetic reasoning.
(14) Partial Correctness

Introduction
The Syntactic Approach
The Semantic Approach Soundness and Completeness

## Assertions are predicates on states

$$
\text { assn }=\text { state } \Rightarrow \text { bool }
$$

Alternative view: sets of states
Semantic approach simplifies meta-theory, our main objective.

## Validity

$$
\begin{aligned}
& \models\{P\} c\{Q\} \\
& \longleftrightarrow \\
& \forall s t .(c, s) \Rightarrow t \longrightarrow P s \longrightarrow Q t \\
& "\{P\} c\{Q\} \text { is valid" }
\end{aligned}
$$

In contrast:

$$
\vdash\{P\} c\{Q\}
$$

" $\{P\} c\{Q\}$ is provable/derivable"

## Provability

$$
\begin{gathered}
\vdash\{P\} \operatorname{SKIP}\{P\} \\
\vdash\{\lambda s . Q(s[a / x])\} x::=a\{Q\} \\
\text { where } s[a / x] \equiv s(x:=\text { aval a } s)
\end{gathered}
$$

Example: $\{5=5\} x:=5\{x=5\}$ in semantic terms:

$$
\vdash\{P\} 0::=N 5\{\lambda s . s 0=5\}
$$

where $P=(\lambda s .(s[N 5 / 0]) 0=5)=(\lambda s .5=5)$

$$
\begin{gathered}
\frac{\vdash\{P\} c_{1}\{Q\} \quad \vdash\{Q\} c_{2}\{R\}}{\vdash\{P\} c_{1} ; c_{2}\{R\}} \\
\stackrel{\vdash\{\lambda s . P s \wedge \text { bval } b s\} c_{1}\{Q\}}{\vdash\{\lambda s . P s \wedge \neg \text { bval } b s\} c_{2}\{Q\}} \\
\frac{\vdash\{P\} I F b \text { THEN } c_{1} E L S E c_{2}\{Q\}}{} \\
\frac{\vdash\{\lambda s . P s \wedge \text { bval } b s\} c\{P\}}{\vdash\{P\} \text { WHILE bDO } c\{\lambda s . P s \wedge \neg b v a l b s\}}
\end{gathered}
$$

$$
\begin{aligned}
& \forall s . P^{\prime} s \longrightarrow P s \\
& \vdash\{P\} c\{Q\} \\
& \forall s . Q s \longrightarrow Q^{\prime} s \\
& \vdash\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\}
\end{aligned}
$$

## Hoare_Examples.thy

(14) Partial Correctness

Introduction
The Syntactic Approach
The Semantic Approach
Soundness and Completeness

## Soundness

Everything that is provable is valid:

$$
\vdash\{P\} c\{Q\} \Longrightarrow \models\{P\} c\{Q\}
$$

Proof by induction, with a nested induction in the While-case.

## Towards completeness: $\models \Longrightarrow \vdash$

## Weakest preconditions

The weakest precondition of command $c$ w.r.t. postcondition $Q$ :

$$
w p \text { c } Q=(\lambda s . \forall t .(c, s) \Rightarrow t \longrightarrow Q t)
$$

The set of states that lead (via $c$ ) into $Q$.
A foundational semantic notion, not merely for the completeness proof.

## Nice and easy properties of $w p$

 wp SKIP $Q=Q$$w p(x::=a) Q=(\lambda s . Q(s[a / x]))$
$w p\left(c_{1} ; c_{2}\right) Q=w p c_{1}\left(w p c_{2} Q\right)$
wp (IF b THEN c $c_{1} E L S E c_{2}$ ) $Q=$
( $\lambda$ s. (bval b $\left.s \longrightarrow w p c_{1} Q s\right) \wedge$
$\left(\neg\right.$ bval $\left.\left.b s \longrightarrow w p c_{2} Q s\right)\right)$
$\neg$ bval $b s \Longrightarrow w p($ WHILE b DO c) $Q s=Q s$
bval b $s \Longrightarrow$
$w p($ WHILE $b$ DO c) $Q s=$
wp $(c ;$ WHILE b DO c) Q s

## Completeness

$$
\vDash\{P\} c\{Q\} \Longrightarrow \vdash\{P\} c\{Q\}
$$

Follows easily if we can prove

$$
\vdash\{w p c Q\} c\{Q\}
$$

Proof by induction on $c$, for arbitary $Q$.

Proving program properties by Hoare logic $(\vdash)$ is just as powerful as by operational semantics $(\models)$.

## WARNING

Most texts that discuss completeness of Hoare logic state or prove that Hoare logic is only "relatively complete" but not complete.
Reason: the standard notion of completeness assumes some abstract mathematical notion of $\models$.
Our notion of $\models$ is defined within the same (limited) proof system (for HOL) as $\vdash$.

## (14) Partial Correctness

## (15) Verification Conditions

(10) Totale Correctness

Idea:
Reduce provability in Hoare logic to provability
in the assertion language:
automate the Hoare logic part of the problem.
More precisely:
Generate an assertion $C$, the verification condition, from $\{P\} c\{Q\}$ such that $\vdash\{P\} c\{Q\}$ iff $C$ is provable.

Method:
Simulate syntax-directed application of Hoare logic rules. Collect all assertion language side conditions.

# A problem: loop invariants 

Where do they come from?
A trivial solution:
Let the user provide them!
How?
Each loop must be annotated with its invariant!

How to synthesize loop invariants automatically is a difficult research problem.

Which we ignore here.

## Terminology:

## VCG $=$ Verification Condition Generator

All successful verification technology for imperative programs relies on

- VCGs (of one kind or another)
- and powerful (semi-)automatic theorem provers.


## The (approx.) plan of attack

(1) Introduce annotated commands with loop invariants
(2) Define functions for computing

- weakest proconditions: pre $::$ com $\Rightarrow$ assn $\Rightarrow$ assn
- verification conditions: vc :: com $\Rightarrow$ assn $\Rightarrow$ assn
(3) Soundness: vc c $Q \Longrightarrow \vdash\{$ ? $\} c\{Q\}$
(4) Completeness: if $\vdash\{P\} c\{Q\}$ then $c$ can be annotated (becoming $c^{\prime}$ ) such that $v c c^{\prime} Q$.

The details are a bit different ...

## Annotated commands

## Like commands ...

datatype acom $=$ Askip<br>Aassign name aexp<br>Asemi acom acom<br>Aif bexp acom acom<br>Awhile bexp assn acom

... but with an assertion $I$ in $A$ while $b I c$.

## Example:

Awhile (Less (V 1) (N 5))
( $\lambda$ s. s $1=0$ )
(Aassign 1 ( $N$ 1) )

## Weakest precondition

pre $::$ acom $\Rightarrow$ assn $\Rightarrow$ assn
pre Askip $Q=Q$
$\operatorname{pre}($ Aassign $x a) Q=(\lambda s . Q(s[a / x]))$
$\operatorname{pre}\left(\right.$ Asemi $\left.c_{1} c_{2}\right) Q=\operatorname{pre}_{1}\left(\right.$ pre $\left.c_{2} Q\right)$
pre (Aif $\left.b \begin{array}{lll} & c_{1} & c_{2}\end{array}\right) Q=$
( $\lambda s$. (bval b $s \longrightarrow$ pre $\left.c_{1} Q s\right) \wedge$
$\left(\neg\right.$ bval $b s \longrightarrow$ pre $\left.c_{2} Q s\right)$ )
pre (Awhile b I c) $Q=I$

## Warning

In the presence of loops, pre $c$ may not be the weakest precondition but may be anything!

## Verification condition

$v c::$ acom $\Rightarrow$ assn $\Rightarrow$ assn
vc Askip $Q=(\lambda s . \operatorname{Tr} u e)$
$v c($ Aassign $x a) Q=(\lambda s . \operatorname{Tr} u e)$
vc (Asemi $c_{1} c_{2}$ ) $Q=$
$\left(\lambda s . v c c_{1}\left(\right.\right.$ pre $\left.\left.c_{2} Q\right) s \wedge v c c_{2} Q s\right)$
$v c\left(\right.$ Aif $\left.b c_{1} c_{2}\right) Q=\left(\lambda s . v c c_{1} Q s \wedge v c c_{2} Q s\right)$
vc (Awhile $b$ I c) $Q=$
$(\lambda s .(I s \wedge \neg$ bval b $s \longrightarrow Q s) \wedge$ $(I s \wedge$ bval $b s \longrightarrow$ pre $c I s) \wedge v c c I s)$

Verification conditions only arise from loops:

- the invariant must be invariant
- and it must imply the postcondition.

Everything else in the definition of $v c$ is just bureaucracy: collecting assertions and passing them around.

Hoare triples operate on com, functions pre and $v c$ operate on acom.
Therefore we define
astrip $::$ acom $\Rightarrow$ com
astrip Askip $=$ SKIP
astrip $($ Aassign $x$ a) $=x::=a$
astrip $\left(\right.$ Asemi $\left.c_{1} c_{2}\right)=$ astrip $c_{1}$; astrip $c_{2}$
$\operatorname{astrip}\left(\right.$ Aif $\left.b c_{1} c_{2}\right)=$
IF b THEN astrip $c_{1}$ ELSE astrip $c_{2}$
astrip (Awhile b I c) = WHILE b DO astrip c

## Soundness of $v c \&$ pre w.r.t. $\vdash$ $\forall s . v c$ c $Q s \Longrightarrow \vdash\{$ pre c $Q\}$ astrip $c\{Q\}$

Proof by induction on $c$, for arbitrary $Q$.
Corolllary:
$(\forall s . v c$ c $Q s) \wedge(\forall s . P s \longrightarrow$ pre $c Q s) \Longrightarrow$ $\vdash\{P\}$ astrip $c\{Q\}$

How to prove some $\vdash\{P\} c_{0}\{Q\}$ :

- Annotate $c_{0}$ yielding $c$, i.e. astrip $c=c_{0}$.
- Prove Hoare-free premise of corollary.

But is premise provable if $\vdash\{P\} c_{0}\{Q\}$ is?
$(\forall s . v c c Q s) \wedge(\forall s . P s \longrightarrow$ pre c $Q s) \Longrightarrow$
$\vdash\{P\}$ astrip $c\{Q\}$
Why could premise not be provable although conclusion is?

- Some annotation in $c$ is not invariant.
- vc or pre are wrong
(e.g. accidentally always produce False).

Therefore we prove completeness: suitable annotations exist such that premise is provable.

## Completeness of $v c$ \& pre w.r.t. $\vdash$

$\vdash\{P\} c\{Q\} \Longrightarrow$
$\exists c^{\prime}$. astrip $c^{\prime}=c \wedge$
$\left(\forall s . v c c^{\prime} Q s\right) \wedge\left(\forall s . P s \longrightarrow\right.$ pre $\left.c^{\prime} Q s\right)$
Proof by rule induction. Needs two monotonicity lemmas:
$\llbracket \forall s . P s \longrightarrow P^{\prime} s$; pre c $P s \rrbracket \Longrightarrow$ pre c $P^{\prime} s$
$\llbracket \forall s . P s \longrightarrow P^{\prime} s ; v c c P s \rrbracket \Longrightarrow v c c P^{\prime} s$

## (14) Partial Correctness

## (15) Verification Conditions

(10) Totale Correctness

- Partial Correctness:
if command terminates, postcondition holds
- Total Correctness: command terminates and postcondition holds

Total Correctness $=$ Partial Correctness + Termination
Formally:
$\models_{t}\{P\} c\{Q\} \equiv \forall s . P s \longrightarrow(\exists t .(c, s) \Rightarrow t \wedge Q t)$
Assumes that semantics is deterministic!
Exercise: Reformulate for nondeterministic language

# $\vdash_{t}$ : A proof system for total correctness 

Only need to change the While-rule.

> Some measure function state $\Rightarrow$ nat must decrease with every loop iteration
$\frac{\bigwedge n . \vdash_{t}\{\lambda s . P s \wedge \text { bval } b s \wedge f s=n\} c\{\lambda s . P s \wedge f s<n\}}{\vdash_{t}\{P\} W H I L E b D O c\{\lambda s . P s \wedge \neg b v a l b s\}}$

# HoareT.thy 

Example

## Soundness

$$
\vdash_{t}\{P\} \subset\{Q\} \Longrightarrow \not{ }_{t}\{P\} c\{Q\}
$$

Proof by induction, with a nested induction (on what?) in the While-case.

## Completeness

$$
\models_{t}\{P\} \subset\{Q\} \Longrightarrow \vdash_{t}\{P\} \subset\{Q\}
$$

Follows easily from

$$
\vdash_{t}\left\{w p_{t} c \quad Q\right\} c\{Q\}
$$

where

$$
w p_{t} c Q \equiv \lambda s . \exists t .(c, s) \Rightarrow t \wedge Q t
$$

Proof of $\vdash_{t}\left\{w p_{t} c \quad Q\right\} c\{Q\}$ is by induction on $c$. In the WHILE b DO case, let $f s$ (in the $\vdash_{t}$ rule for While) be the number of iterations that the loop needs if started in state $s$.
This $f$ depends on $b$ and $c$ and is definable in HOL.

## Part VII

## Extensions of IMP

# (11) Procedures and Local Variables 

## 18 A C-like Language

(19) Towards an OO Language

# (11) Procedures and Local Variables 

(18) A C-like Language
(19) Towards an OO Language
(1) Procedures and Local Variables Introduction
Dynamic Scope for VAR and PROC Dynamic Scope for VAR, Static Scope for PROC Static Scope for VAR and PROC

## New commands

Declare local variable: $\quad\{V A R x ; c\}$
Define local procedure: $\left\{P R O C p=c ; c^{\prime}\right\}$
Call procedure:
CALL p

## Concrete syntax

com $::=$... basic commands...
| \{VAR name; com $\}$
| $\{$ PROC name $=$ com; ; com $\}$
| CALL name

## Abstract syntax

## datatype com $=\ldots$. basic commands...

Var name com
Proc name com com
CALL name

## Scoping

Static scoping
Name $n$ refers to the textually enclosing declaration of $n$ in the program text.
Dynamic scoping
Name $n$ refers to the most recent declaration of $n$ during execution.

## Example

$$
\begin{aligned}
& \{\text { VAR } 0 ; 0::=N 0 ; \\
& \{\text { PROC } 0=0::=\text { Plus }(\text { V } 0)(V 0) ; ; \\
& \{P R O C 1=C A L L 0 ; \\
& \quad\{V A R 0 ; ; 0::=N 5 ; \\
& \quad\{P R O C 0=0::=\text { Plus }(V 0)(N 1) ; \\
& \quad \text { CALL } 1 ; 1::=V 0\}\}\}\}\}
\end{aligned}
$$

What is the final value of variable 1 ?

- static scope for $V A R$ and $P R O C$
- dynamic scope for $V A R$ and static scope for $P R O C$
- dynamic scope for $V A R$ and $P R O C$

C does not allow nested procedures, which simplifies the semantics.

Most functional languages allow nested procedures.
As does Java, via inner classes.
Dynamic scoping is a concept from hell and rarely used.
But its semantics is easy to define and a good starting point.
(17) Procedures and Local Variables

Introduction
Dynamic Scope for VAR and PROC Dynamic Scope for VAR, Static Scope for PROC Static Scope for VAR and PROC

## Procedure environment

$$
\text { penv }=\text { name } \Rightarrow \text { com }
$$

Big-step semantics:

$$
p e \vdash(c, s) \Rightarrow t
$$

where pe :: penv.
Rules for basic commands are upgraded by adding pe $\vdash$. Example:

$$
\frac{p e \vdash\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \quad p e \vdash\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}{p e \vdash\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3}}
$$

## Rules for new commands

$$
\begin{gathered}
\frac{p e \vdash(c, s) \Rightarrow t}{p e \vdash(\{V A R x ; c\}, s) \Rightarrow t(x:=s x)} \\
\frac{p e(p:=c p) \vdash(c, s) \Rightarrow t}{p e \vdash(\{P R O C p=c p ; c\}, s) \Rightarrow t} \\
\frac{p e \vdash(p e p, s) \Rightarrow t}{p e \vdash(C A L L p, s) \Rightarrow t}
\end{gathered}
$$

Dynamic scoping because $p e(n)$ and $s(n)$ are the current values of $n$ w.r.t. execution.
(17) Procedures and Local Variables

Introduction
Dynamic Scope for VAR and PROC
Dynamic Scope for VAR, Static Scope for PROC Static Scope for VAR and PROC

The static environment for a procedure $p$ is the procedure environment at the point where $p$ is declared, i.e. the static links to the procedures known at that point.

Recorde the static environment for each procedure together with the procedure body:

$$
\text { penv }=\text { name } \Rightarrow \text { com } \times \text { penv }
$$

Recursive type synonyms not allowed.
Alternative: organize procedure environment like a stack.

$$
\text { penv }=(\text { name } \times \text { com }) \text { list }
$$

The static environment of $p$ is the penv before $\left(p,{ }_{-}\right)$was added: pop until $\left.(p,)_{-}\right)$is found.

## Rules for new commands

$$
\begin{gathered}
p e \vdash(c, s) \Rightarrow t \\
\frac{p e \vdash(\{V A R x ; c c\}, s) \Rightarrow t(x:=s x)}{p e \vdash(\{P R O C p=c p ; c\}, s) \Rightarrow t} \\
\frac{(p, c p) \# p e \vdash(c, s) \Rightarrow t}{\frac{(p, c) \# p e \vdash(c, s) \Rightarrow t}{(p, c) \# p e \vdash(C A L L p, s) \Rightarrow t}} \\
\frac{p^{\prime} \neq p \quad p e \vdash(C A L L p, s) \Rightarrow t}{\left(p^{\prime}, c\right) \# p e \vdash(C A L L p, s) \Rightarrow t}
\end{gathered}
$$

(17) Procedures and Local Variables

Introduction
Dynamic Scope for VAR and PROC
Dynamic Scope for VAR, Static Scope for PROC
Static Scope for VAR and PROC

Separate variable names from their storage addresses. The same $x$ can have different addresses at different points in the program.

$$
a d d r=n a t
$$

A variable environment associates names with addresses:

$$
v e n v=n a m e \Rightarrow a d d r
$$

A store associates addresses with values:

$$
\text { store }=a d d r \Rightarrow \text { nat }
$$

Note: If $s::$ store and $v e::$ venv then $s \circ$ ve :: state.

The static environment for each procedure $p$ records both

- the procedure environment and
- the variable environment at the point where $p$ is declared.
The procedure environment is recorded as before (in the stack), the variable environment explicitly:

$$
\text { penv }=(\text { name } \times \text { venv } \times \text { com }) \text { list }
$$

Interpretation of $(p, v e, c)$ :
variable $x$ in $c$ refers to address $v e(x)$.

## Big-step format

Execution takes place in the context of

- a procedure environment pe
- a variable environment ve
- a free address $f$

Instead of a state, the semantics transforms a store $s$ :

$$
(p e, v e, f) \vdash(c, s) \Rightarrow t
$$

Execution also modifies the context, but input/output behaviour is captured by the store transformation.

Auxiliary function: venv $(p e, v e, f)=v e$

## Rules for basic commands

$$
e \vdash(S K I P, s) \Rightarrow s
$$

$(p e, v e, f) \vdash(x::=a, s) \Rightarrow s(v e x:=$ aval $a(s \circ v e))$

$$
\begin{aligned}
& \frac{e \vdash\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \quad e \vdash\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}{e \vdash\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3}} \\
& \frac{\text { bval } b(s \circ \text { venv } e) \quad e \vdash\left(c_{1}, s\right) \Rightarrow t}{e \vdash\left(\text { IF b THEN } c_{1} E L S E c_{2}, s\right) \Rightarrow t} \\
& \frac{\neg \text { bval } b(s \circ \text { venv } e) \quad e \vdash\left(c_{2}, s\right) \Rightarrow t}{e \vdash\left(\text { IF b THEN } c_{1} E L S E c_{2}, s\right) \Rightarrow t}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\neg \text { bval b }(s \circ \text { venv e) }}{e \vdash(\text { WHILE bDO } c, s) \Rightarrow s} \\
\frac{b \vdash\left(c, s_{1}\right) \Rightarrow s_{2} \quad e \text { val } b\left(s_{1} \circ\right. \text { venv e) }}{e \vdash\left(\text { WHILE } b D O c, s_{2}\right) \Rightarrow s_{3}}
\end{gathered}
$$

## Rules for new commands

$(p e, v e(x:=f), f+1) \vdash(c, s) \Rightarrow t$
$\overline{(p e, v e, f) \vdash(\{V A R x ;} ; c\}, s) \Rightarrow t(x:=s x)$
$((p, c p, v e) \# p e, v e, f) \vdash(c, s) \Rightarrow t$
$\overline{(p e, v e, f) \vdash(\{P R O C p=c p ; c\}, s) \Rightarrow t}$
$((p, c, v e) \# p e, v e, f) \vdash(c, s) \Rightarrow t$
$\overline{((p, c, v e) \# p e, v e}, f) \vdash(C A L L p, s) \Rightarrow t$
$\frac{p^{\prime} \neq p \quad(p e, v e, f) \vdash(C A L L p, s) \Rightarrow t}{\left(\left(p^{\prime}, c, v e^{\prime}\right) \# p e, v e, f\right) \vdash(C A L L p, s) \Rightarrow t}$

## (11) Procedures and Local Variables

## 18 A C-like Language

(19) Towards an OO Language

## Motto

Addresses are numbers, too!
We take full advantage of state $=$ nat $\Rightarrow$ nat

## Arithmetic expressions

## datatype $a \exp =N$ nat

$$
\begin{aligned}
& \text { Deref aexp } \\
& \text { Plus aexp aexp }
\end{aligned}
$$

- Syntax: ! $a \equiv$ Deref $a$
- Pronounced "contents of $a$ "
- Allows terms like ! (Plus (! (N 5)) (N 2)).


## Why no variables?

Numbers are addresses are variables. Instead of $V 1$ we now write ! $\left(\begin{array}{l}N\end{array}\right)$.

C has variables, but you can obtain their address.
We work directly with addresses.

## aval and bval

$\begin{aligned} \text { aval }:: \text { aexp } \Rightarrow \text { state } & \Rightarrow \text { nat } \\ & =n \\ \text { aval }(N n) s & =s(\text { aval a } s) \\ \text { aval }(!\text { a) } s & \\ \text { aval }\left(\text { Plus } a_{1} a_{2}\right) s & =\text { aval } a_{1} s+\text { aval } a_{2} s\end{aligned}$

Function bval remains unchanged.

## Assignment

$$
\text { aexp }::=a \exp
$$

Left-hand side is address, righ-hand side is value.

## Memory allocation

A new command:
New aexp aexp

New a $k$ allocates a storage block of size $k$ and stores the start address at address $a$.

Why not make New $k$ an aexp that returns the start address as its value?

## Big-step semantics

$$
(\text { com, state }, \text { nat }) \Rightarrow(\text { state }, \text { nat })
$$

- The nat-component is the first free address.
- Everything beyond that address is free, too.
- This free pointer increases monotonically.
- There is no garbage collection.
- This is a very concrete storage allocation policy.
- More abstract nondeterministic models are possible but sacrifice executability.

In Isabelle, tuples are nested pairs:

$$
\begin{aligned}
(a, b, c) & \equiv(a,(b, c)) \\
\tau_{1} \times \tau_{2} \times \tau_{3} & \equiv \tau_{1} \times\left(\tau_{2} \times \tau_{3}\right)
\end{aligned}
$$

$\Longrightarrow$ big_step is of type
com $\times($ state $\times n a t) \Rightarrow($ state $\times$ nat $) \Rightarrow$ bool

## Big-step rules

$(S K I P, s n) \Rightarrow s n$
$($ lhs $::=a, s, n) \Rightarrow(s($ aval lhs $s:=$ aval $a s), n)$
(New lhs a, $s, n) \Rightarrow(s($ aval lhs $s:=n), n+$ aval a $s)$

$$
\frac{\left(c_{1}, s n_{1}\right) \Rightarrow s n_{2} \quad\left(c_{2}, s n_{2}\right) \Rightarrow s n_{3}}{\left(c_{1} ; c_{2}, s n_{1}\right) \Rightarrow s n_{3}}
$$

## Big-step rules

$$
\begin{aligned}
& \frac{b v a l b s}{\left(\text { IF } b \text { THEN } c_{1}\right.} \quad\left(c_{1}, s, n\right) \Rightarrow t n \\
& \frac{\neg \text { oval } b s}{} \quad\left(c_{2}, s, n\right) \Rightarrow t n \\
& \left(\text { IF } b \text { THEN } c_{1} E L S E c_{2}, s, n\right) \Rightarrow t n \\
& \hline t n
\end{aligned}
$$

## Big-step rules

$$
\begin{gathered}
\frac{\neg b v a l b s}{(W H I L E b D O c, s, n) \Rightarrow(s, n)} \\
\frac{b v a l b s_{1}}{\left(c, s_{1}, n\right) \Rightarrow s n_{2} \quad\left(W H I L E b D O c, s n_{2}\right) \Rightarrow s n_{3}} \\
\left(W H I L E b D O c, s_{1}, n\right) \Rightarrow s n_{3}
\end{gathered}
$$

How does assignment differ from C?
In C (and most imperative languages), the Ihs and the rhs are evaluated differently:

- on the lhs, a variable represents its address,
- on the rhs, a variable represents its value.

We use! to achieve the same effect.

## Some array and pointer algorithms

## Array summation example

Variables:
$!(N 0)=$ address of first element of array
$!(N 1)=$ address of last element of array
$!(N 2)=$ sum, initially 0

## Linked list creation example

Variables:
$!\left(\begin{array}{ll}N & 0)\end{array}\right)$ number of elements to be created
$!\left(\begin{array}{l}N\end{array}\right)=$ counter, initially 0
! ( $N$ 2) $=$ head of list, initially 0
$!(N 3)=$ aux
List element: (list size, next pointer)

## (11) Procedures and Local Variables

## (18) A C-like Language

(19) Towards an OO Language

## Motto

Everything is an object!
Even natural numbers.

## Design decisions

- Every language construct is an expression.
- Every expression evaluates to an object reference.


## Expressions exp

| Null |  |
| :--- | :--- |
| New | Variable access |
| $V$ string | Field access |
| exp•string | Variable assignment |
| string $:=$ exp | Field assignment |
| exp•string $::=$ exp | Method call |
| exp•string<exp $>$ |  |
| exp; exp |  |
| IF bexp THEN exp ELSE exp |  |

- Why no SKIP?
- Why no WHILE?
- Why no multiple parameters?


## Boolean expressions bexp

bexp $=B$ bool $\mid$ Not bexp $\mid$ And bexp bexp $\mid E q \exp \exp$

## A case of mutually recursive data types

datatype $\exp =\ldots \exp \ldots$ bexp ... and $\quad$ bexp $=\ldots$ bexp ...exp...

## References, objects, stores

A reference is null or an address (nat):

$$
\text { datatype ref }=\text { null } \mid \text { Ref nat }
$$

An object maps field names to references:

$$
\text { obj }=\text { string } \Rightarrow \text { ref }
$$

A store maps addresses to objects:

$$
\text { store }=\text { nat } \Rightarrow \text { obj }
$$

## Environments

A variable environment maps variable names to references:

$$
\text { venv }=\text { string } \Rightarrow \text { ref }
$$

A method environment maps method names to bodies:

$$
\text { menv }=\text { string } \Rightarrow \exp
$$

## Big-step semantics

$$
\text { menv } \vdash(\exp , \text { config }) \Rightarrow(\text { ref, config })
$$

where

$$
\text { config }=\text { venv } \times \text { store } \times \text { nat }
$$

## Big-step rules

$$
m e \vdash(N u l l, c) \Rightarrow(\text { null }, c)
$$

$m e \vdash$
$($ New, ven, s, $n) \Rightarrow($ Ref $n$, ve, $s(n:=\lambda f . n u l l), n+1)$

$$
\begin{aligned}
& m e \vdash(V x, v e, s n) \Rightarrow(v e x, v e, s n) \\
& \frac{m e \vdash(e, c) \Rightarrow\left(\text { Ref } a, v e^{\prime}, s^{\prime}, n^{\prime}\right)}{m e \vdash(e \cdot f, c) \Rightarrow\left(s^{\prime} a f, v e^{\prime}, s^{\prime}, n^{\prime}\right)}
\end{aligned}
$$

## Big-step rules

$$
\begin{gathered}
\frac{m e \vdash(e, c) \Rightarrow\left(r, v e^{\prime}, s n^{\prime}\right)}{m e \vdash(x::=e, c) \Rightarrow\left(r, v e^{\prime}(x:=r), s n^{\prime}\right)} \\
m e \vdash\left(o e, c_{1}\right) \Rightarrow\left(\text { Ref } a, c_{2}\right) \\
m e \vdash\left(e, c_{2}\right) \Rightarrow\left(r, v e_{3}, s_{3}, n_{3}\right) \\
m e \vdash\left(o e \cdot f::=e, c_{1}\right) \Rightarrow\left(r, v e_{3}, s_{3}(a, f:=r), n_{3}\right)
\end{gathered}
$$

where $f(x, y:=z) \equiv f(x:=(f x)(y:=z))$

## Big-step rules

$$
\begin{gathered}
m e \vdash\left(\text { oe, } c_{1}\right) \Rightarrow\left(\text { or }, c_{2}\right) \\
m e \vdash(\text { pe, c. } 2) \Rightarrow\left(\text { pr, vex } 3, s n_{3}\right) \\
v e=(\lambda x . \text { null })\left({ }^{\prime \prime} t h i s^{\prime \prime}:=\text { or, "aram" }:=p r\right) \\
m e \vdash\left(m e m, \text { ve, } s n_{3}\right) \Rightarrow\left(r, v e^{\prime}, s n_{4}\right) \\
m e \vdash\left(o e \cdot m<p e>, c_{1}\right) \Rightarrow\left(r, v e_{3}, s n_{4}\right)
\end{gathered}
$$

## Big-step rules

$$
\begin{gathered}
\frac{m e \vdash\left(e_{1}, c_{1}\right) \Rightarrow\left(r, c_{2}\right) \quad m e \vdash\left(e_{2}, c_{2}\right) \Rightarrow c_{3}}{m e \vdash\left(e_{1} ; e_{2}, c_{1}\right) \Rightarrow c_{3}} \\
\frac{m e \vdash\left(b, c_{1}\right) \rightarrow\left(\text { True }, c_{2}\right) \quad m e \vdash\left(e_{1}, c_{2}\right) \Rightarrow c_{3}}{m e \vdash\left(I F b T H E N e_{1} E L S E e_{2}, c_{1}\right) \Rightarrow c_{3}} \\
\frac{m e \vdash\left(b, c_{1}\right) \rightarrow\left(\text { False }, c_{2}\right) \quad m e \vdash\left(e_{2}, c_{2}\right) \Rightarrow c_{3}}{m e \vdash\left(I F b T H E N e_{1} E L S E e_{2}, c_{1}\right) \Rightarrow c_{3}}
\end{gathered}
$$

## Evaluation of bexp

$$
\text { menv } \vdash(\text { bexp, config }) \rightarrow(\text { bool, config })
$$

The rules are the obvious ones.
A case of mutually inductive predicates:

## inductive

big_step $::$ menv $\Rightarrow$ exp $\times$ config $\Rightarrow$ ref $\times$ config $\Rightarrow$ bool and
bval $::$ menv $\Rightarrow$ bexp $\times$ config $\Rightarrow$ bool $\times$ config $\Rightarrow$ bool

## Natural numbers as objects

- 0 is represented by null.
- $n+1$ is represented by an object with a predecessor field that points to a representation of $n$.

Successor method:
("s" $::=$ New)•"pred" $::=V^{\prime \prime}$ this"; $V^{\prime \prime} s^{\prime \prime}$
Addition method:

$$
\begin{aligned}
& \text { IF Eq (V "param") Null THEN V "this" } \\
& \text { ELSE V "this"."succ" }<\text { Null }>\cdot \\
& \text { "add"< } V^{\prime \prime} \text { "param"."pred" }>
\end{aligned}
$$

Which central OO feature is missing?

## Dynamic method binding

In $o e \cdot m\langle e\rangle$, the name $m$ determines the method, the object has no influence.

Two possible extensions:

- Attach the method body to each object, like the fields.
- Superimpose a class system and attach a class to each object.

