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Why Semantics?

Without semantics,
we do not really know what our programs mean.

We merely have a good intuition and a warm feeling.

Like the state of mathematics in the 19th century
— before set theory and logic entered the scene.
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Intuition is important!

• You need a good intuition to get your work done
efficiently.

• To understand the average accounting program,
intuition suffices.

• To write a bug-free accounting program may require
more than intuition!

• I assume you have the necessary intuition.

• This course is about “beyond intuition”.
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Intuition is not sufficient!

Writing correct language processors (e.g. compilers,
refactoring tools, . . . ) requires

• a deep understanding of language semantics,

• the ability to reason (= perform proofs) about the
language and your processor.

Example:
What does the correctness of a type checker even mean?
How is it proved?
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Why Semantics??

We have a compiler — that is the ultimate semantics!!

• A compiler gives each individual program a
semantics.

• It does not help with reasoning about the PL or
individual programs.

• Because compilers are far too complicated.

• They provide the worst possible semantics.

• Moreover: compilers may differ!
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The sad facts of life

• Most languages have one or more compilers.

• Most compilers have bugs.

• Few languages have a (separate, abstract)
semantics.

• If they do, it will be informal (English).
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Bugs

• Google “compiler bug”

• Google “hostile applet”
Early versions of Java had various security holes.
Some of them had to do with an incorrect
bytecode verifier.

GI Dissertationspreis 2003:
Gerwin Klein: Verified Java Bytecode Verification
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Standard ML (SML)
First real language with a mathematical semantics:
Milner, Tofte, Harper:
The Definition of Standard ML. 1990.

Robin Milner (1934–2010)
Turing Award 1991.

Main achievements: LCF (theorem proving)
SML (functional programming)
CCS, pi (concurrency)
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The sad fact of life

SML semantics hardly used:

• too difficult to read to answer simple questions
quickly

• too much detail to allow reliable informal proof

• not processable beyond LATEX, not even executable
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More sad facts of life

• Real programming languages are complex.

• Even if designed by academics, not industry.

• Complex designs are error-prone.

• Informal mathematical proofs of complex designs
are also error-prone.
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The solution

Machine-checked language semantics and proofs

• Semantics at least type-correct

• Maybe executable

• Proofs machine-checked

The tool:

Interactive Theorem Prover
(ITP)

13



Interactive Theorem Provers

• You give the structure of the proof

• The ITP checks the correctness of each step

• Can prove hard and huge theorems

Government health warnings:

Time consuming
Potentially addictive

Undermines your naive trust in informal proofs
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Terminology

This lecture course:

Formal = machine-checked
Verification = formal correctness proof

Traditionally:

Formal = mathematical
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Two landmark verifications

C compiler
Competitive with gcc -O1

Xavier Leroy
INRIA Paris
using Coq

Operating system
microkernel (L4)

Gerwin Klein (& Co)
NICTA Sydney
using Isabelle
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A happy fact of life

Programming language researchers
are increasingly using ITPs
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Why verification pays off

Short term: The software works!

Long term:

Tracking effects of changes by rerunning proofs

Incremental changes of the software
typically require only incremental changes of the proofs

Long term much more important than short term:

Software Never Dies
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What this course is not about

• Hot or trendy PLs

• Comparison of PLs or PL paradigms

• Compilers (although they will be one application)
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What this course is about

• Techniques for the description and analysis of
• PLs
• PL tools
• Programs

• Description techniques: operational semantics

• Proof techniques: inductions

Both informally and formally (ITP!)
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Our ITP: Isabelle/HOL

• Developed mainly in Munich (Nipkow & Co) and
Paris (Wenzel)

• Started 1986 in Cambridge (Paulson)

• The logic HOL is ordinary mathematics

Learning to use Isabelle/HOL
is an integral part of the course

All exercises require the use of Isabelle/HOL
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Why I am so passionate
about the ITP part

• It is the future

• It is the only way to deal with complex languages
reliably

• I want students to learn how to write correct proofs

• I have seen too many proofs that look more like
LSD trips than coherent mathematical arguments
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Overview of course

• Introduction to Isabelle/HOL

• IMP (assignment and while loops) and its semantics

• A compiler for IMP

• Hoare logic for IMP

• Type systems for IMP

• Program analysis for IMP
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The semantics part of the course is mostly traditional

The use of an ITP is leading edge

So far, there are only a handful of universties that
combine these two topics as aggressively as we do:
Harvard, Princeton, UPenn, Saarbrücken, . . .
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What you learn in this course goes far beyond PLs

It has applications in compilers, security,
software engineering etc.

It is a new approach to informatics
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Part I

Programming and Proving in HOL
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Simplification and Induction
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Notation

Implication associates to the right:

A =⇒ B =⇒ C means A =⇒ (B =⇒ C)

A1 . . . An

B
means A1 =⇒ . . . =⇒ An =⇒ B
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Simplification and Induction
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HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has

• datatypes
• recursive functions
• logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:

• For the moment: only term = term,
e.g. 1 + 2 = 4

• Later: ∧, ∨, −→, ∀, . . .
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2 Overview of Isabelle/HOL
Types and terms
Proof General
By example: types bool, nat and list
Summary
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Types

Basic type syntax:

τ ::= (τ)
| bool | nat | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ functions
| τ × τ pairs (ascii: *)
| τ list lists
| τ set sets
| . . . user-defined types

Convention: τ 1 ⇒ τ 2 ⇒ τ 3 ≡ τ 1 ⇒ (τ 2 ⇒ τ 3)
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Terms

Terms can be formed as follows:

• Function application:
f t
is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction:
λx. t
is the function with parameter x and result t,
i.e. “x 7→ t”.
Example: λx. plus x x
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Basic term syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.
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The computation rule of the λ-calculus is the
replacement of formal by actual parameters:

(λx. t) u = t[u/x]

where t[u/x] is “t with u substituted for x”.

Example: (λx. x + 5) 3 = 3 + 5

• The step from (λx. t) u to t[u/x] is called
β-reduction.

• Isabelle performs β-reduction automatically.
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Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: τ means “t is a well-typed term of type τ”.

t :: τ 1 ⇒ τ 2 u :: τ 1
t u :: τ 2
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Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (x::nat)
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Currying

Thou shalt Curry your functions

• Curried: f :: τ 1 ⇒ τ 2 ⇒ τ

• Tupled: f ′ :: τ 1 × τ 2 ⇒ τ

Advantage:

Currying allows partial application
f a1 where a1 :: τ 1
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Predefined syntactic sugar

• Infix: +, −, ∗, #, @, . . .

• Mixfix: if then else , case of, . . .

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !

Enclose if and case in parentheses:

! (if then else ) !
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Isabelle text = Theory = Module

Syntax: theory MyTh
imports ImpTh1 . . . ImpThn
begin

(definitions, theorems, proofs, ...)∗

end

MyTh: name of theory. Must live in file MyTh.thy

ImpThi: name of imported theories. Import transitive.

Usually: imports Main
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2 Overview of Isabelle/HOL
Types and terms
Proof General
By example: types bool, nat and list
Summary
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Proof General

An Isabelle Interface

by David Aspinall
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Proof General

Customized version of (x)emacs:

• all of emacs

• Isabelle aware (when editing .thy files)

• mathematical symbols (“x-symbols”)
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X-Symbols

Input of funny symbols

• via abbreviation: =>, ==>, /\, \/, . . .

• via ascii encoding (similar to LATEX): \<and>, . . .

• via menu (“X-Symbol”)
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I3P by Holger Gast

Similar to ProofGeneral but

• Does not need emacs

• =⇒ easier to install!

• Based on Netbeans/Swing

• =⇒ may be more familiar

• Nicer fonts

• . . .
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Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides
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Overview_Demo.thy
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2 Overview of Isabelle/HOL
Types and terms
Proof General
By example: types bool, nat and list
Summary
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Type bool

datatype bool = True | False

Predefined functions:
∧, ∨, −→, . . . :: bool ⇒ bool ⇒ bool

A logical formula is a term of type bool

if-and-only-if: =
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Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc 0), . . .

Predefined functions: +, ∗, ... :: nat ⇒ nat ⇒ nat

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ′a, + :: ′a ⇒ ′a ⇒ ′a

You need type annotations: 1 :: nat, x + (y::nat)
. . . unless the context is unambiguous: Suc z
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Nat_Demo.thy
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Type ′a list

Lists of elements of type ′a

datatype ’a list = Nil | Cons ’a (’a list)

Syntactic sugar:

• [] = Nil: empty list

• x # xs = Cons x xs:
list with first element x (“head”) and rest xs (“tail”)

• [x1, . . . , xn] = x1 # . . . xn # []
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Structural Induction for lists

To prove that P(xs) for all lists xs, prove

• P([]) and

• for arbitrary x and xs, P(xs) implies P(x#xs).

P([])
∧

x xs. P(xs) =⇒ P(x#xs)

P(xs)
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List_Demo.thy
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Large library: HOL/List.thy
Included in Main.

Don’t reinvent, reuse!

Predefined: xs @ ys (append), length, and map:

map f [x1, . . . , xn] = [f x1, . . . , f xn]

fun map :: ( ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list where
map f [] = [] |
map f (x#xs) = f x # map f xs

Note: map takes function as argument.
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2 Overview of Isabelle/HOL
Types and terms
Proof General
By example: types bool, nat and list
Summary
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• datatype defines (possibly) recursive data types.

• fun defines (possibly) recursive functions by
pattern-matching over datatype constructors.
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Proof methods

• induct performs structural induction on some
variable (if the type of the variable is a datatype).

• auto solves as many subgoals as it can, mainly by
simplification (symbolic evaluation):

“=” is used only from left to right!
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Proofs

General schema:

lemma name: "..."

apply (...)

apply (...)
...
done

If the lemma is suitable as a simplification rule:

lemma name[simp]: "..."
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Top down proofs

Command

sorry

“completes” any proof.

Allows top down development:

Assume lemma first, prove it later.
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The proof state

1.
∧

x1 . . . xp. A =⇒ B

x1 . . . xp fixed local variables
A local assumption(s)
B actual (sub)goal
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Preview: Multiple assumptions

[[ A1; . . . ; An ]] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

; ≈ “and”
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Simplification and Induction

64



3 Type and function definitions
Type definitions
Function definitions
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Type abbreviations
types name = τ

Introduces an abbreviation name for type τ

Examples:

types
name = string
( ′a, ′b)foo = ′a list × ′b list

Type abbreviations are expanded after parsing
and are not present in internal representation and output
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datatype — the general case
datatype (α1, . . . , αn)τ = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ (α1, . . . , αn)τ

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity: (Ci x1 . . . xni
= Ci y1 . . . yni

) =
(x1 = y1 ∧ · · · ∧ xni

= yni
)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly
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Case expressions
Datatype values can be taken apart with case:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:

(case m of 0 ⇒ Suc 0 | Suc ⇒ 0)

Nested patterns:

(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | ⇒ 2)

Complicated patterns mean complicated proofs!

Need ( ) in context
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3 Type and function definitions
Type definitions
Function definitions
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Non-recursive definitions

Example:
definition sq :: nat ⇒ nat where sq n = n∗n

No pattern matching, just f x1 . . . xn = . . .

70



Nontermination can kill

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !
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Key features of fun

• Pattern-matching over datatype constructors

• Order of equations matters

• Termination must be provable automatically
by size measures

• Proves customized induction schema
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Example: separation

fun sep :: ′a ⇒ ′a list ⇒ ′a list where

sep a (x#y#zs) = x # a # sep a (y#zs) |
sep a xs = xs
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Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where
ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:

• (Suc m, 0) > (m, Suc 0)

• (Suc m, Suc n) > (Suc m, n)

• (Suc m, Suc n) > (m, )
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Tree_Demo.thy
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primrec

• A restrictive version of fun

• Means primitive rercursive

• Most functions are primitive recursive

• Frequently found in Isabelle theories

The essence of primitive recursion:

f(0) = . . . no recursion
f(Suc n) = . . . f(n). . .

g([]) = . . . no recursion
g(x#xs) = . . . g(xs). . .
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2 Overview of Isabelle/HOL

3 Type and function definitions

4 Simplification and Induction
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4 Simplification and Induction
Simplification
Induction
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Simplification means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation ; simplification rule

Simplification = (Term) Rewriting
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An example

Equations:

0 + n = n (1)
(Suc m) + n = Suc (m+ n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)
(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True
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Conditional rewriting

Simplification rules can be conditional:

[[ P1; . . . ; Pk ]] =⇒ l = r

is applicable only if all Pi can be proved first,
again by simplification.

Example:
p(0) = True

p(x) =⇒ f(x) = g(x)

We can simplify f(0) to g(0) but
we cannot simplify f(1) because p(1) is not provable.
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

[[ P1; . . . ; Pk ]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO
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Proof method simp
Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using

• lemmas with attribute simp

• rules from fun and datatype

• additional lemmas eq1 . . . eqn
• assumptions P1 . . . Pm

Variations:

• (simp . . . del: . . . ) removes simp-lemmas

• add and del are optional
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auto versus simp

• auto acts on all subgoals

• simp acts only on subgoal 1

• auto applies simp and more

• auto can also be modified:
(auto simp add: . . . simp del: . . . )
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Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f def . . . )

f is the function whose definition is to be unfolded.
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Case splitting with simp
Automatic:

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

By hand:

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀ n. e = Suc n −→ P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split
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Simp_Demo.thy
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4 Simplification and Induction
Simplification
Induction
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Basic induction heuristics

Theorems about recursive functions are proved by
induction

Induction on argument number i of f
if f is defined by recursion on argument number i
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A tail recursive reverse
Our initial reverse:

fun rev :: ′a list ⇒ ′a list where
rev [] = [] |
rev (x#xs) = rev xs @ [x]

A tail recursive version:

fun itrev :: ′a list ⇒ ′a list ⇒ ′a list where
itrev [] ys = ys |
itrev (x#xs) ys =

itrev xs (x#ys)

lemma itrev xs [] = rev xs

Why in this direction?
Because the lhs is “more complex” than the rhs.
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Induct_Demo.thy

Generalisation
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Generalisation

• Replace constants by variables

• Generalize free variables
• by ∀ in formula
• by arbitrary in induction proof
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So far, all proofs were by structural induction
because all functions where primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.
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Computation Induction:
Example

fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2(Suc(Suc n)) = Suc(div2 n)

; induction rule div2.induct:

P (0) P (Suc 0) P (n) =⇒ P (Suc(Suc n))

P (m)
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Computation Induction

If f :: τ ⇒ τ ′ is defined by fun, a special induction
schema is provided to prove P (x) for all x :: τ :

for each defining equation

f(e) = . . . f(r1) . . . f(rk) . . .

prove P (e) assuming P (r1), . . . , P (rk).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct
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How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induct a1 . . . an rule: f.induct)

Heuristic:

• there should be a call f a1 . . . an in your goal

• ideally the ai should be variables.
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Induct_Demo.thy

Computation Induction
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Part II

Interlude: Expressions
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5 IMP Expressions
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5 IMP Expressions
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This section introduces

arithmetic and boolean expressions

of our imperative language IMP.

IMP commands are introduced later.
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5 IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machines and Compilation
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Concrete and abstract syntax

Concrete syntax: strings, eg "a+5*b"

Abstract syntax: trees, eg
+
@
@
@

�
�
�a *

A
AA

�
��

5 b

Parser: function from strings to trees

Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!
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Concrete syntax is defined by a context-free grammar, eg

a ::= n | x | (a) | a+ a | a ∗ a | . . .

where n can be any natural number and x any variable.

We focus on abstract syntax
which we introduce via datatypes.
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Datatype aexp

Variable names are replaced by numbers:

types name = nat
datatype aexp = N nat | V name | Plus aexp aexp

Concrete Abstract
5 N 5
x V 0
x+y Plus (V 0) (V 1)
2+(z+3) Plus (N 2) (Plus (V 2) (N 3))
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Warning

This is syntax, not (yet) semantics!

N 0 6= Plus (N 0) (N 0)
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The (program) state

What is the value of x+1?

• The value of an expression
depends on the value of its variables.

• The value of all variables is recorded in the state.

• The state is a function from variable names to
values:

types state = name ⇒ nat

107



How to write down a state

• There is no pretty notation like
{0 7→ 7, 1 7→ 42, . . . }

• But there is [7, 42, . . . ]

• And there is nth :: ′a list ⇒ (nat ⇒ ′a)

• Thus: nth [7, 42, . . . ] :: state
nth [7, 42, . . . ] ≈ {0 7→ 7, 1 7→ 42, . . . }

The joys of partial application!

• Infix syntax for nth xs n: xs ! n

• By def of nth: [7, 42, . . . ] ! 1 = 42

• Warning: [7, 42] ! 3 has some value —
but we do not know which!
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AExp.thy
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5 IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machines and Compilation
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BExp.thy
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5 IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machines and Compilation
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ASM.thy
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This was easy.
Because evaluation of expressions always terminates.
But execution of programs may not terminate.
Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.
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Part III

Logic and Structured Proofs
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6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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6 Logic and Proof beyond “=”
Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
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Syntax (in decreasing priority):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form
| ∀x. form | ∃x. form

Examples:
¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C

s = t ∧ C ≡ (s = t) ∧ C
A ∧ B = B ∧ A ≡ A ∧ (B = B) ∧ A
∀ x. P x ∧ Q x ≡ ∀ x. (P x ∧ Q x)

Input syntax: ←→ (same priority as −→)
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Conventions:

• ∧, ∨ and −→ associate to the right:
A ∧ B ∧ C ≡ A ∧ (B ∧ C)

• A −→ B −→ C ≡ A −→ (B −→ C)

6≡ (A −→ B) −→ C !

• ∀ x y. P x y ≡ ∀ x. ∀ y. P x y (∀ , ∃ , λ, . . . )
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Warning

Quantifiers have low priority
and need to be parenthesized (if in some context)

! P ∧ ∀ x. Q x ; P ∧ (∀ x. Q x) !
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X-Symbols

. . . and their ascii representations:

∀ \<forall> ALL

∃ \<exists> EX

λ \<lambda> %

−→ -->

←→ <-->

∧ /\ &

∨ \/ |

¬ \<not> ~

6= \<noteq> ~=
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Sets over type ′a

′a set = ′a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B

• A ∪ B, A ∩ B, A − B, − A

• . . .

∈ \<in> :

⊆ \<subseteq> <=

∪ \<union> Un

∩ \<inter> Int
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6 Logic and Proof beyond “=”
Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
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simp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

• Show you where they got stuck

• highly incomplete

• Extensible with new simp-rules

Exception: auto acts on all subgoals

125



fastsimp

• rewriting, logic, sets, relations and a bit of arithmetic.

• incomplete but better than auto.

• Succeeds or fails

• Extensible with new simp-rules
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blast

• A complete proof search procedure for FOL . . .

• . . . but (almost) without “=”

• Covers logic, sets and relations

• Succeeds or fails

• Extensible with new deduction rules
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Automating arithmetic

arith:

• proves linear formulas (no “∗”)

• complete for quantifier-free real arithmetic

• complete for first-order theory of nat and int
(Presburger arithmetic)
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Sledgehammer
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Architecture:

Isabelle

Formula
& filtered library

↓ ↑ Proof
=

lemmas used
external
ATPs1

Characteristics:

• Sometimes it works,

• sometimes it doesn’t.

Do you feel lucky?

1Automatic Theorem Provers
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by(proof-method)

≈

apply(proof-method)
done

131



Auto_Proof_Demo.thy
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Proof Automation
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Inductive Definitions
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Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed.

Step-by-step proofs can occasionally be more readable
than automagic proofs.
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What are these ?-variables ?

After you have finished a proof, Isabelle turns all free
variables V in the theorem into ?V.

Example: theorem conjI: [[?P; ?Q]] =⇒ ?P ∧ ?Q

These ?-variables can later be instantiated:

• By hand:
conjI[of "a=b" "False"] ;
[[a = b; False]] =⇒ a = b ∧ False

• By unification:
unifying ?P ∧ ?Q with a=b ∧ False
sets ?P to a=b and ?Q to False.
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Rule application
Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q

subgoal: 1. . . . =⇒ A ∧ B
Result: 1. . . . =⇒ A

2. . . . =⇒ B

The general case: applying rule [[ A1; . . . ; An ]] =⇒ A
to subgoal . . . =⇒ C:

• Unify A and C

• Replace C with n new subgoals A1 . . . An

apply(rule xyz)

“Backchaining”

136



Typical backwards rules

?P ?Q
?P ∧ ?Q

conjI

?P =⇒ ?Q
?P −→ ?Q

impI

∧
x. ?P x
∀ x. ?P x

allI

?P =⇒ ?Q ?Q =⇒ ?P
?P = ?Q

iffI

They are known as introduction rules
because they introduce a particular connective.
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Teaching blast new intro rules
If r is a theorem [[ A1; . . . ; An ]] =⇒ A then

(blast intro: r)

allows blast to backchain on r during proof search.

Example:

theorem trans: [[ ?x ≤ ?y; ?y ≤ ?z ]] =⇒ ?x ≤ ?z

goal 1. [[ a ≤ b; b ≤ c; c ≤ d ]] =⇒ a ≤ d

proof apply(blast intro: trans)

Can greatly increase the search space!
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Forward proof: OF
If r is a theorem [[ A1; . . . ; An ]] =⇒ A
and r1, . . . , rm (m≤n) are theorems then

r[OF r1 . . . rm]

is the theorem obtained
by proving A1 . . . Am with r1 . . . rm.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"] refl[of "b"]]

;
a = a ∧ b = b
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From now on: ? mostly suppressed on slides
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Single_Step_Demo.thy
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=⇒ versus −→

=⇒ is part of the Isabelle framework. It structures
theorems and proof states: [[ A1; . . . ; An ]] =⇒ A

−→ is part of HOL and can occur inside the logical
formulas Ai and A.

Phrase theorems like this [[ A1; . . . ; An ]] =⇒ A
not like this A1 ∧ . . . ∧ An −→ A
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6 Logic and Proof beyond “=”
Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
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Example: even numbers

Informally:

• 0 is even

• If n is even, so is n+ 2

• These are the only even numbers

In Isabelle/HOL:

inductive Ev :: nat ⇒ bool
where

Ev 0 |
Ev n =⇒ Ev (n + 2)
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Easy proof: Ev 4

Ev 0 =⇒ Ev 2 =⇒ Ev 4

Trickier proof: Ev m =⇒ Ev (m+m)

Idea: induction on the length of the proof of Ev m
Better: induction on the structure of the proof

Two cases: Ev m is proved by

• rule Ev 0
=⇒ m = 0 =⇒ Ev (0+0)

• rule Ev n =⇒ Ev (n+2)
=⇒ m = n+2 and Ev (n+n) (ind. hyp.!)
=⇒ m+m = (n+2)+(n+2) = ((n+n)+2)+2
=⇒ Ev (m+m)
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Rule induction for Ev
To prove

Ev n =⇒ P n

by rule induction on Ev n we must prove

• P 0

• P n =⇒ P(n+2)

Rule Ev.induct:

Ev n P 0
∧

n. P n =⇒ P(n+2)
P n
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Format of inductive definitions

inductive I :: τ ⇒ bool where
[[ I a1; . . . ; I an ]] =⇒ I a |
...

Note:

• I may have multiple arguments.

• Each rule may also contain side conditions not
involving I.
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Rule induction in general

To prove

I x =⇒ P x

by rule induction on I x
we must prove for every rule

[[ I a1; . . . ; I an ]] =⇒ I a

that P is preserved:

[[ P a1; . . . ; P an ]] =⇒ P a
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!
Rule induction is absolutely central

to (operational) semantics
and the rest of this lecture course

!
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Inductive_Demo.thy
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6 Logic and Proof beyond “=”

7 Isar: A Language for Structured Proofs
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Apply scripts

• unreadable

• hard to maintain

• do not scale

No structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration
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A typical Isar proof

proof
assume formula0

have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1
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Isar core syntax
proof = proof [method] step∗ qed

| by method

method = (simp . . . ) | (blast . . . ) | (induct . . . ) | . . .

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | . . .
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Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction
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Example: Cantor’s theorem

lemma Cantor: ¬ surj(f :: ′a ⇒ ′a set)
proof default proof: assume surj, show False

assume a: surj f
from a have b: ∀ A. ∃ a. A = f a

by(simp add: surj def)
from b have c: ∃ a. {x. x /∈ f x} = f a

by blast
from c show False

by blast
qed
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Isar_Demo.thy

Cantor and abbreviations
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Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have
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using and with

(have|show) prop using facts
=

from facts (have|show) prop

with facts
=

from facts this
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Structured lemma statement

lemma Cantor ′:
fixes f :: ′a ⇒ ′a set
assumes s: surj f
shows False

proof − no automatic proof step

have ∃ a. {x. x /∈ f x} = f a using s
by(auto simp: surj def)

thus False by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.
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The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively
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Structured lemma statements

fixes x :: τ1 and y :: τ2 . . .
assumes a: P and b: Q . . .
shows R

• fixes and assumes sections optional

• shows optional if no fixes and assumes
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←→

show P ←→ Q
proof

assume P
...
show Q . . .

next
assume Q
...
show P . . .

qed
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Set equality and subset

show A = B
proof

show A ⊆ B . . .
next

show B ⊆ A . . .
qed

show A ⊆ B
proof

fix x
assume x ∈ A
...
show x ∈ B . . .

qed
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Case distinction

show R
proof cases

assume P
...
show R . . .

next
assume ¬ P
...
show R . . .

qed

have P ∨ Q . . .
then show R
proof

assume P
...
show R . . .

next
assume Q
...
show R . . .

qed
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¬

show ¬ P
proof

assume P
...
show False . . .

qed

show P
proof (rule ccontr)

assume ¬P
...
show False . . .

qed

Contradiction
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∀ and ∃ introduction

show ∀ x. P(x)
proof

fix x local fixed variable

show P(x) . . .
qed

show ∃ x. P(x)
proof

...
show P(witness) . . .

qed
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∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x
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obtain example

lemma Cantor ′′: ¬ surj(f :: ′a ⇒ ′a set)
proof

assume surj f
hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj def)

then obtain a where {x. x /∈ f x} = f a by blast
hence a /∈ f a ←→ a ∈ f a by blast

thus False by blast
qed
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Isar_Demo.thy

Exercise
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Example: pattern matching

show formula1 ←→ formula2 (is ?L ←→ ?R)
proof

assume ?L
...
show ?R . . .

next
assume ?R
...
show ?L . . .

qed
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?thesis

show formula (is ?thesis)
proof -

...
show ?thesis . . .

qed

Every show implicitly defines ?thesis
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let

Introducing local abbreviations in proofs:

let ?t = "some-big-term"
...
have ". . . ?t . . . "
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Quoting facts by value
By name:

have x0: ”x > 0” . . .
...
from x0 . . .

By value:

have ”x > 0” . . .
...
from ‘x>0‘ . . .

↑ ↑
back quotes
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Isar_Demo.thy

Pattern matching and quotation
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Example

lemma
assumes xs = rev xs
shows (∃ ys. xs = ys @ rev ys) ∨

(∃ ys a. xs = ys @ a # rev ys)
proof ???
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Isar_Demo.thy

Top down proof development
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When automation fails
Split proof up into smaller steps.

Or explore by apply:

have . . . using . . .
apply - to make incoming facts

part of proof state
apply auto or whatever
apply . . .

At the end:

• done

• Better: convert to structured proof
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moreover—ultimately

have P1 . . .
moreover
have P2 . . .
moreover
...
moreover
have Pn . . .
ultimately
have P . . .

≈

have lab1: P1 . . .
have lab2: P2 . . .
...
have labn: Pn . . .
from lab1 lab2 . . .
have P . . .

With names
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Raw proof blocks

{ fix x1 . . . xn
assume A1 . . . Am
...
have B
}

proves [[ A1; . . . ; Am ]] =⇒ B
where all xi have been replaced by ?xi.
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Isar_Demo.thy

moreover and { }
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Proof state and Isar text

In general: proof method

Applies method and generates subgoal(s):∧
x1 . . . xn [[ A1; . . . ; Am ]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am
...
show B

Separated by next
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Isar_Induct_Demo.thy

Case distinction
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Datatype case distinction
datatype t = C1 ~τ | . . .

proof (cases "term")
case (C1 ~x)
· · · ~x · · ·

next
...
qed

where case (Ci ~x) ≡
fix ~x
assume Ci:︸︷︷︸

label

term = (Ci ~x)︸ ︷︷ ︸
formula
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Isar_Induct_Demo.thy

Structural induction for nat
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Structural induction for nat

show P(n)
proof (induct n)

case 0 ≡ let ?case = P (0)
...
show ?case

next
case (Suc n) ≡ fix n assume Suc: P (n)
... let ?case = P (Suc n)...
show ?case

qed
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Structural induction with =⇒
show A(n) =⇒ P(n)
proof (induct n)

case 0 ≡ fix x assume 0: A(0)
... let ?case = P(0)
show ?case

next
case (Suc n) ≡ fix n
... assume Suc: A(n) =⇒ P(n)

A(Suc n)
... let ?case = P(Suc n)
show ?case

qed
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A remark on style

• case (Suc n) . . . show ?case
is easy to write and maintain

• fix n assume formula . . . show formula ′

is easier to read:
• all information is shown locally
• no contextual references (e.g. ?case)
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Isar_Induct_Demo.thy

Rule induction
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Rule induction

inductive I :: τ ⇒ σ ⇒ bool
where
rule1: . . .
...
rulen: . . .

show I x y =⇒ P x y
proof (induct rule: I.induct)

case rule1
. . .
show ?case

next
...
next

case rulen
. . .
show ?case

qed
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Fixing your own variable names

case (rulei x1 . . . xk)

Renames the first k variables in rulei (from left to right)
to x1 . . . xk.
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The named assumptions
Given: an inductive definition of I.
In a proof of

I. . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B,

in the context of
case R

we have

R.hyps the assumptions of rule R, plus the induction
hypothesis for each assumption I . . .

R.prems the premises Ai

R = R.hyps @ R.prems
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Part IV

IMP: A Simple Imperative Language
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9 Compiler

10 A Typed Version of IMP
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Terminology

Statement: declaration of fact or claim

Semantics is easy.

Command: order to do something

Read the slides until you have understood them.

Expressions are evaluated, commands are executed
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Commands

Concrete syntax:

com ::= SKIP

| nat ::= aexp

| com ; com

| IF bexp THEN com ELSE com

| WHILE bexp DO com
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Commands

Abstract syntax:

datatype com = SKIP

| Assign nat aexp

| Semi com com

| If bexp com com

| While bexp com
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Com.thy
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Function update notation

If f :: τ 1 ⇒ τ 2 and a :: τ 1 and b :: τ 2 then

f(a := b)

is the function that behaves like f
except that it returns b for argument a.

f(a := b) = (λx. if x = a then b else f x)
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8 IMP
Big Step Semantics
Small Step Semantics
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Big step semantics

Concrete syntax:

(com, initial-state) ⇒ final-state

Intended meaning of (c, s) ⇒ t:

Command c started in state s terminates in state t

“⇒” here not type!
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Big step rules

(SKIP, s) ⇒ s

(x ::= a, s) ⇒ s(x := aval a s)

(c1, s1) ⇒ s2 (c2, s2) ⇒ s3

(c1; c2, s1) ⇒ s3
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Big step rules

bval b s (c1, s) ⇒ t

(IF b THEN c1 ELSE c2, s) ⇒ t

¬ bval b s (c2, s) ⇒ t

(IF b THEN c1 ELSE c2, s) ⇒ t
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Big step rules

¬ bval b s

(WHILE b DO c, s) ⇒ s

bval b s1
(c, s1) ⇒ s2 (WHILE b DO c, s2) ⇒ s3

(WHILE b DO c, s1) ⇒ s3
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Examples: derivation trees

...
(0 ::= N 5; 1 ::= V 0, s) ⇒ ?

...
(w, si) ⇒ ?

where w = WHILE b DO c
b = NotEq (V 0) (N 2)
c = 0 ::= Plus (V 0) (N 1)

NotEq a1 a2 =
Not(And (Not(Less a1 a2)) (Not(Less a2 a1)))

and si is “{0 7→ i}” (formally: si = nth [i]).
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Logically speaking

(c, s) ⇒ t

is just infix syntax for

big step (c,s) t

where

big step :: com × state ⇒ state ⇒ bool

is an inductively defined predicate.
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Big_Step.thy

Semantics
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Rule inversion
What can we deduce from

• (SKIP, s) ⇒ t ?

t = s

• (x ::= a, s) ⇒ t ?

t = s(x := aval a s)

• (c1; c2, s1) ⇒ s3 ?

∃ s2. (c1, s1) ⇒ s2 ∧ (c2, s2) ⇒ s3

• (IF b THEN c1 ELSE c2, s) ⇒ t ?

bval b s ∧ (c1, s) ⇒ t ∨
¬ bval b s ∧ (c2, s) ⇒ t

• (w, s) ⇒ t where w = WHILE b DO c ?

¬ bval b s ∧ t = s ∨
bval b s ∧ (∃ s ′. (c, s) ⇒ s ′ ∧ (w, s ′) ⇒ t)
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How are these inversions proved?
By case distinction:

Which rules could have derived (c, s) ⇒ t,
and under which conditions?

Automatic proof via inductive cases
Produces an optimized format: elimination rules
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We reformulate the inverted rules. Example:

(c1; c2, s1) ⇒ s3

∃ s2. (c1, s1) ⇒ s2 ∧ (c2, s2) ⇒ s3

is logically equivalent to the more convenient

(c1; c2, s1) ⇒ s3∧
s2. [[(c1, s1) ⇒ s2; (c2, s2) ⇒ s3]] =⇒ P

P

Replaces assm (c1; c2, s1) ⇒ s3 by two assms
(c1, s1) ⇒ s2 and (c2, s2) ⇒ s3 (with a new fixed s2).

No ∃ and ∧!

Similar for all other inverted rules
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The general format: elimination rules

asm asm1 =⇒ P . . . asmn =⇒ P
P

(possibly with
∧
x in front of the asmi =⇒ P )

Reading:

To prove a goal P with assumption asm,
prove all asmi =⇒ P

Example:

F ∨ G F =⇒ P G =⇒ P
P
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elim attribute

• Theorems with elim attribute are used
automatically by blast, fastsimp and auto

• Can also be added locally, eg (blast elim: . . . )

• Variant: elim! applies elim-rules eagerly.
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Big_Step.thy

Rule inversion
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Command equivalence

Two commands have the same input/output behaviour:

c ∼ c ′ ≡ (∀ s t. (c,s) ⇒ t ←→ (c ′,s) ⇒ t)
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Example

w ∼ iw

where w = WHILE b DO c
iw = IF b THEN c; w ELSE SKIP

A derivation-based proof:
transform any derivation of (w, s) ⇒ t
into a derivation of (iw, s) ⇒ t,
and vice versa.
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A formula-based proof

(w, s) ⇒ t

←→
bval b s ∧ (∃ s ′. (c, s) ⇒ s ′ ∧ (w, s ′) ⇒ t)

∨
¬ bval b s ∧ t = s

←→
(iw, s) ⇒ t

Using the rules and rule inversions for ⇒.
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Big_Step.thy

Command equivalence
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Execution is deterministic

Any two executions of the same command in the same
start state lead to the same final state:

(c, s) ⇒ t =⇒ (c, s) ⇒ t ′ =⇒ t = t ′

Proof by rule induction, for arbitrary t ′.
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Big_Step.thy

Execution is deterministic

227



The boon and bane of big steps

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff @ t. (c, s) ⇒ t ?

Needs a formal notion of nontermination to prove it.
Could be wrong if we have forgotten a ⇒ rule.
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Big step semantics cannot directly describe

• nonterminating computations,

• parallel computations.

We need a finer grained semantics!
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Big Step Semantics
Small Step Semantics
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Small step semantics
Concrete syntax:

(com,state) → (com,state)

Intended meaning of (c, s) → (c ′, s ′):

The first step in the execution of c in state s
leaves a “remainder” command c ′

to be executed in state s ′.

Execution as finite or infinite reduction:

(c1,s1) → (c2,s2) → (c3,s3) → . . .
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Terminology

• A pair (c,s) is called a configuration.

• If cs → cs ′ we say that cs reduces to cs ′.

• A configuration cs is final iff @ cs ′. cs → cs ′
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The intention:

(SKIP, s) is final

Why?

SKIP is the empty program. Nothing more to be done.
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Small step rules

(x::=a, s) → (SKIP, s(x := aval a s))

(SKIP; c, s) → (c, s)

(c1, s) → (c′1, s
′)

(c1; c2, s) → (c′1; c2, s
′)
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Small step rules

bval b s

(IF b THEN c1 ELSE c2, s) → (c1, s)

¬ bval b s

(IF b THEN c1 ELSE c2, s) → (c2, s)

(WHILE b DO c, s) →
(IF b THEN c; WHILE b DO c ELSE SKIP, s)

Fact (SKIP, s) is a final configuration.
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Small step examples

(2 ::= V 0; 0 ::= V 1; 1 ::= V 2, s) → . . .

where s = nth [11, 13, 17].

(w, s0) → . . .

where w = WHILE b DO c
b = Less (V 0) (N 1)
c = 0 ::= Plus (V 0) (N 1)
sn = nth [n]
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Small_Step.thy

Semantics

237



Are big and small step semantics equivalent?
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From ⇒ to →∗

Theorem cs ⇒ t =⇒ cs →∗ (SKIP, t)

Proof by rule induction (of course on cs ⇒ t)
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From →∗ to ⇒

Theorem cs →∗ (SKIP, t) =⇒ cs ⇒ t

Needs to be generalized:

Lemma 1 cs →∗ cs ′ =⇒ cs ′⇒ t =⇒ cs ⇒ t

Now Theorem follows from Lemma 1 by (SKIP, t) ⇒ t.

Lemma 1 is proved by rule induction on cs →∗ cs ′.
Needs

Lemma 2 cs → cs ′ =⇒ cs ′⇒ t =⇒ cs ⇒ t

Lemma 2 is proved by rule induction on cs → cs ′.
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Equivalence

Corollary cs ⇒ t ←→ cs →∗ (SKIP, t)
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Small_Step.thy

Equivalence of big and small
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Can execution stop prematurely?

That is, are there any final configs except (SKIP,s) ?

Lemma final (c, s) =⇒ c = SKIP

We prove the contrapositive (c 6= SKIP =⇒ ¬
final(c,s))
by induction on c.
• Case c1; c2: by case distinction:

• c1 = SKIP =⇒ ¬ final (c1; c2, s)
• c1 6= SKIP =⇒ ¬ final (c1, s) (by IH)

=⇒ ¬ final (c1; c2, s)

• Remaining cases: trivial or easy
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By rule inversion: (SKIP, s) → ct =⇒ False

Together:

Corollary final (c, s) = (c = SKIP)
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Infinite executions

⇒ yields final state iff → terminates

Lemma (∃ t. cs ⇒ t) = (∃ cs ′. cs →∗ cs ′ ∧ final cs ′)

Proof: (∃ t. cs ⇒ t)
= (∃ t. cs →∗ (SKIP,t))

(by big = small)
= (∃ cs ′. cs →∗ cs ′ ∧ final cs ′)

(by final = SKIP)

Equivalent:

⇒ does not yield final state iff → does not terminate
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May versus Must

→ is deterministic:

Lemma cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′

(Proof by rule induction)

Therefore: no difference between

may terminate (there is a terminating → path)

must terminate (all → paths terminate)

Therefore: ⇒ correctly reflects termination behaviour.

With nondeterminism: may have both cs ⇒ t and a
nonterminating reduction cs → cs ′→ . . .
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Stack Machine

Instructions:

datatype instr =
PUSH N nat
PUSH V nat
ADD |
STORE nat | store
JMPF nat | jump fwd
JMPB nat | jump bwd
JMPFLESS nat | jump fwd if <
JMPFGE nat jump fwd if ≥

249



Type abbreviations:

stack = nat list
config = nat × state × stack

Execution of 1 instruction:

P ` (pc, s, stk) → (pc ′, s ′, stk ′)

instr list ` config → config
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i < |P| P ! i = PUSH N n

P ` (i, s, stk) → (i + 1, s, n # stk)

i < |P| P ! i = PUSH V x

P ` (i, s, stk) → (i + 1, s, s x # stk)

i < |P| P ! i = ADD

P ` (i, s, stk) → (i + 1, s, (hd2 stk + hd stk) # tl2 stk)

i < |P| P ! i = STORE n

P ` (i, s, stk) → (i + 1, s(n := hd stk), tl stk)
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i < |P| P ! i = JMPF n

P ` (i, s, stk) → (i + 1 + n, s, stk)

i < |P| P ! i = JMPB n n ≤ i + 1

P ` (i, s, stk) → (i + 1 − n, s, stk)

i < |P| P ! i = JMPFLESS n

P ` (i, s, stk) → (i ′, s, tl2 stk)
where
i ′ = (if hd2 stk < hd stk then i + 1 + n else i + 1)

JMPFGE: analogous
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Defined in the usual manner:

P ` (pc, s, stk) →∗ (pc ′, s ′, stk ′)
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Compiler.thy

Stack Machine
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Compiling aexp

Same as before:

acomp (N n) = [PUSH N n]
acomp (V n) = [PUSH V n]
acomp (Plus a1 a2) = acomp a1 @ acomp a2 @ [ADD]

Correctness theorem:

acomp a ` (0, s, stk) →∗ (|acomp a|, s, aval a s # stk)

Proof by induction on a (with arbitrary stk).

Needs lemmas!
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P ` c →∗ c ′ =⇒ P @ P ′ ` c →∗ c ′

P ` (i, s, stk) →∗ (i ′, s ′, stk ′) =⇒
P ′ @ P ` (|P ′| + i, s, stk) →∗ (|P ′| + i ′, s ′, stk ′)

Proofs by rule induction on →∗,
using the corresponding single step lemmas:

P ` c → c ′ =⇒ P @ P ′ ` c → c ′

P ` (i, s, stk) → (i ′, s ′, stk ′) =⇒
P ′ @ P ` (|P ′| + i, s, stk) → (|P ′| + i ′, s ′, stk ′)

Proofs by cases/induction.
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Compiling bexp
Let ins be the compilation of b:

Do not put value of b on the stack
but let value of b determine where execution of ins ends.

Principle:

• Either execution leads to the end of ins

• or it jumps to offset +n beyond ins.

Parameters: when to jump (if b is True or False)
where to jump to (n)

bcomp :: bexp ⇒ bool ⇒ nat ⇒ instr list
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Example

Let b =
And (Less (V 0) (V 1)) (Not (Less (V 2) (V 3))).

bcomp b False 3 =

[PUSH V 0,
PUSH V 1,

JMPFGE 6

,
PUSH V 2,
PUSH V 3,

JMPFLESS 3

]
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bcomp :: bexp ⇒ bool ⇒ nat ⇒ instr list

bcomp (B v) c n = (if v = c then [JMPF n] else [])

bcomp (Not b) c n = bcomp b (¬c) n

bcomp (Less a1 a2) c n =

acomp a1 @
acomp a2 @
(if c then [JMPFLESS n] else [JMPFGE n])

bcomp (And b1 b2) c n =

let cb2 = bcomp b2 c n;
m = if c then |cb2| else |cb2| + n;
cb1 = bcomp b1 False m

in cb1 @ cb2
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Correctness of bcomp

bcomp b c n
` (0, s, stk) →∗

(|bcomp b c n| + (if c = bval b s then n else 0), s,
stk)
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Compiling com

ccomp :: com ⇒ instr list

ccomp SKIP = []

ccomp (x ::= a) = acomp a @ [STORE x]

ccomp (c1; c2) = ccomp c1 @ ccomp c2
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ccomp (IF b THEN c1 ELSE c2) =

let cc1 = ccomp c1; cc2 = ccomp c2;
cb = bcomp b False (|cc1| + 1)

in cb @ cc1 @ JMPF |cc2| # cc2

ccomp (WHILE b DO c) =

let cc = ccomp c; cb = bcomp b False (|cc| + 1)
in cb @ cc @ [JMPB (|cb| + |cc| + 1)]
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Correctness of ccomp

If the source code produces a certain result,
so should the compiled code:

(c, s) ⇒ t =⇒
ccomp c ` (0, s, stk) →∗ (|ccomp c|, t, stk)

Proof by rule induction.
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The other direction
We have only shown

compiled code simulates source code.

How about ⇐=:
source code simulates compiled code?

If ccomp c produces result t, and if (c, s) ⇒ t ′,
then =⇒ implies that ccomp c must also produce t ′

and thus t ′ = t (why?).

But we have not ruled out this potential error:

c does not terminate but ccomp c does.

We stop here.
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Why Types?

To prevent mistakes, dummy!
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There are 3 kinds of types

The Good Static types that guarantee absence of certain
runtime faults.
Example: no memory access errors in Java.

The Bad Static types that have mostly decorative value
but do not guarantee anything at runtime.
Example: C, C++

The Ugly Dynamic types that detect errors when it can
be too late.
Example: “Message not understood” in
Smalltalk.
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The ideal

Well-typed programs cannot go wrong.

Robin Milner, A Theory of Type Polymorphism in
Programming, 1978.

The most influential slogan and one of the most
influential papers in programming language theory.
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What could go wrong?

1 Corruption of data

2 Null pointer exception

3 Nontermination

4 Run out of memory

5 Secret leaked

6 and many more . . .

There are type systems for everything (and more)
but in practice (Java, C#) only 1 is covered.
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Type safety

A programming language is type safe if the execution of
a well-typed program cannot lead to certain errors.

Java and the JVM have been proved to be type safe.
(Note: Java exceptions are not errors!)
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Correctness and completeness
Type soundness means that the type system is
sound/correct w.r.t. the semantics:

If the type system says yes,
the semantics does not lead to an error.

The semantics is the primary definition,
the type system must be justified w.r.t. it.

How about completeness? Remember Rice:

Nontrivial semantic properties of programs
(e.g. termination) are undecidable.

Hence there is no (decidable) type system that accepts
all programs that have a certain semantic property.
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Automatic analysis of semantic program properties
is necessarily incomplete.
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Arithmetic

Values:

datatype val = Iv int | Rv real

The state:

state = name ⇒ val

Arithmetic expresssions:

datatype aexp =
Ic int | Rc real | V name | Plus aexp aexp
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Why tagged values?

Because we want to detect if things “go wrong”.

What can go wrong? Adding integer and real!
No automatic coercions.

Does this mean any implementation of IMP also needs
to tag values?

No! Compilers compile only well-typed programs, and
well-typed programs do not need tags.

Tags are only used to detect certain errors
and to prove that the type system avoids those errors.
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Evaluation of aexp
Not recursively function but inductive predicate:

taval :: aexp ⇒ state ⇒ val ⇒ bool

taval (Ic i) s (Iv i)

taval (Rc r) s (Rv r)

taval (V x) s (s x)

taval a1 s (Iv i1) taval a2 s (Iv i2)

taval (Plus a1 a2) s (Iv (i1 + i2))

taval a1 s (Rv r1) taval a2 s (Rv r2)

taval (Plus a1 a2) s (Rv (r1 + r2))
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Example: evaluation of Plus (V 0) (Ic 1)

If s 0 = Iv i:

taval (V 0) s (Iv i) taval (Ic 1) s (Iv 1)

taval (Plus (V 0) (Ic 1)) s (Iv(i + 1))

If s 0 = Rv r : then there is no value v such that
taval (Plus (V 0) (Ic 1)) s v.
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The functional alternative

An extremely useful datatype:

datatype ′a option = None | Some ′a

A “partial” function:

taval :: aexp ⇒ state ⇒ val option

Exercise!
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Boolean expressions
Defined as usual.

tbval :: bexp ⇒ state ⇒ bool ⇒ bool

tbval (B bv) s bv
tbval b s bv

tbval (Not b) s (¬ bv)

tbval b1 s bv1 tbval b2 s bv2

tbval (And b1 b2) s (bv1 ∧ bv2)

taval a1 s (Iv i1) taval a2 s (Iv i2)

tbval (Less a1 a2) s (i1 < i2)

taval a1 s (Rv r1) taval a2 s (Rv r2)

tbval (Less a1 a2) s (r1 < r2)
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com: big or small steps?

We need to detect if things “go wrong”.

• Big step semantics:
Cannot model error by absence of final state.
Would confuse error and nontermination.
Could introduce an extra error-element, e.g.
big step :: com × state ⇒ state option ⇒ bool
Complicates formalization.

• Small step semantics:
error = semantics gets stuck
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Small step semantics

taval a s v

(x ::= a, s) → (SKIP, s(x := v))

tbval b s True

(IF b THEN c1 ELSE c2, s) → (c1, s)

tbval b s False

(IF b THEN c1 ELSE c2, s) → (c2, s)

The other rules remain unchanged.
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Example

Let c = (x ::= Plus (V 0) (Ic 1)).

• If s 0 = Iv i : (c, s) → (SKIP, s(x := Iv (i + 1)))

• If s 0 = Rv r : (c, s) 6→
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Type system
There are two types:

datatype ty = Ity | Rty

What is the type of Plus (V 0) (V 1) ?

Depends on the type of V 0 and V 1 !

A type environment maps variable names to their types:

tyenv = name ⇒ ty

The type of an expression is always relative to / in the
context of a type enviroment Γ. Standard notation:

Γ ` e : τ
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The type of an aexp

Γ ` a : τ
tyenv ` aexp : ty

The rules:

Γ ` Ic i : Ity

Γ ` Rc r : Rty

Γ ` V x : Γ x

Γ ` a1 : τ Γ ` a2 : τ

Γ ` Plus a1 a2 : τ
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Example

...
Γ ` Plus (V 0) (Plus (V 0) (Ic 0)) : ?

where Γ 0 = Ity.
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Well-typed bexp

Notation:

Γ ` b
tyenv ` bexp

Read: In context Γ, b is well-typed.
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The rules:

Γ ` B bv

Γ ` b

Γ ` Not b

Γ ` b1 Γ ` b2

Γ ` And b1 b2

Γ ` a1 : τ Γ ` a2 : τ

Γ ` Less a1 a2

Example: Γ ` Less (Ic i) (Rc r)
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Well-typed commands

Notation:

Γ ` c
tyenv ` com

Read: In context Γ, c is well-typed.
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The rules:

Γ ` SKIP

Γ ` a : Γ x

Γ ` x ::= a

Γ ` c1 Γ ` c2

Γ ` c1; c2

Γ ` b Γ ` c1 Γ ` c2

Γ ` IF b THEN c1 ELSE c2

Γ ` b Γ ` c

Γ ` WHILE b DO c
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Interlude: Rule formats

Let P (t) be an inductively defined predicate (e.g.
well-typedness) such that

• t is of some syntactic type (e.g. aexp),
i.e. some datatype, and

• the definition is executable,
i.e. the output (e.g. the type) is computable from
the input t by backchaining.

All our semantics and type systems have this property.
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The definition of P is

• syntax directed if there is exactly one rule for each
syntactic construct.

=⇒ no backtracking needed during execution

• compositional if P (c t1 . . . tn) depends only on
P (t1), . . . , P (tn).

=⇒ execution always terminates (if the rules do not
use other nonterminating predicates)

=⇒ A syntax directed, compositional definition of P (t)
allows execution in |t| many backchaining steps.
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A1 . . . An

B

is invertible if

B

A1 ∧ . . . ∧ An

also holds.

Which of our type systems consist only of invertible
rules?

A syntax directed, compositional definition which consists
only of invertible rules can be defined as a recursive
function by considering each rule as an equation.

295



A recursive definition of Γ ` c

Γ ` SKIP ←→ True

Γ ` x ::= a ←→ Γ ` a : Γ x

Γ ` c1; c2 ←→ Γ ` c1 ∧ Γ ` c2

Γ ` IF b THEN c1 ELSE c2 ←→
Γ ` b ∧ Γ ` c1 ∧ Γ ` c2

Γ ` WHILE b DO c ←→ Γ ` b ∧ Γ ` c

Is easier to use than traditional inductive one.
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Well-typed states

Even well-typed programs can get stuck . . .
. . . if they start in a bad state.

Remember:
If s 0 = Rv r then (x ::= Plus (V 0) (Ic 1), s) 6→

The state must be well-typed w.r.t. Γ.

Frequent alternative terminology:
The state must conform to Γ.
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The type of a value:

type (Iv i) = Ity
type (Rv r) = Rty

Well-typed state:

(Γ ` s) = (∀ x. type (s x) = Γ x)
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Type soundness
Reduction cannot get stuck:

If everything is ok ( Γ ` s, Γ ` c ),
and you take a finite number of steps,
and you have not reached SKIP,
then you can take one more step.

Follows from progress:

If everything is ok and you have not reached SKIP,
then you can take one more step.

and preservation:

If everything is ok and you take a step,
then everything is ok again.
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The slogan

Progress ∧ Preservation =⇒ Type safety

Progress Well-typed programs do not get stuck.

Preservation Well-typedness is preserved by reduction.

Preservation: Well-typedness is an invariant.
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com
Progress:

[[Γ ` c; Γ ` s; c 6= SKIP]] =⇒ ∃ cs ′. (c, s) → cs ′

Preservation:

[[(c, s) → (c ′, s ′); Γ ` c; Γ ` s]] =⇒ Γ ` s ′

[[(c, s) → (c ′, s ′); Γ ` c]] =⇒ Γ ` c ′

Type soundness:

[[(c, s) →∗ (c ′, s ′); Γ ` c; Γ ` s; c ′ 6= SKIP]]
=⇒ ∃ cs ′′. (c ′, s ′) → cs ′′
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bexp

Progress:

[[Γ ` b; Γ ` s]] =⇒ ∃ v. tbval b s v
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aexp

Progress:

[[Γ ` a : τ ; Γ ` s]] =⇒ ∃ v. taval a s v

Preservation:

[[Γ ` a : τ ; taval a s v; Γ ` s]] =⇒ type v = τ
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All proofs by rule induction.
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Types.thy
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The mantra

Type systems have a purpose:

The static analysis of programs
in order to predict their runtime behaviour.

The correctness of the prediction must be provable.
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Part V

Data-Flow Analyses and Optimization
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Each local variable must have a definitely
assigned value when any access of its value
occurs. A compiler must carry out a specific
conservative flow analysis to make sure that,
for every access of a local variable x, x is
definitely assigned before the access; otherwise
a compile-time error must occur.

Java Language Specification

Java was the first language to force programmers to
initialize their variables.
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Java versus IMP:

• Java has local variables and parameters;
parameters are always initialized.

• IMP: we assume that certain variables are initialized
before the program starts.
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Examples: ok or not?
Assume x is initialized and x 6= y.

IF Less (V x) (N 1) THEN y ::= V x
ELSE y ::= Plus (V x) (N 1);
y ::= Plus (V y) (N 1)

IF Less (V x) (V x) THEN y ::= Plus (V y) (N 1)
ELSE y ::= V x

Assume x and y are initialized and distinct [x, y, z]:

WHILE Less (V x) (V y) DO z ::= V x;
z ::= Plus (V z) (N 1)

313



Simplifying principle

We do not analyze boolean expressions
to determine program execution.
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Theory Vars provides an overloaded function vars:

vars :: aexp ⇒ name set
vars (N n) = ∅
vars (V x) = {x}
vars (Plus a1 a2) = vars a1 ∪ vars a2

vars :: bexp ⇒ name set
vars (B bv) = ∅
vars (Not b) = vars b
vars (And b1 b2) = vars b1 ∪ vars b2
vars (Less a1 a2) = vars a1 ∪ vars a2
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Vars.thy
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Modified example from the JLS:

Variable x is definitely assigned after SKIP
iff x is definitely assigned before SKIP.

Similar statements for each each language construct.
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D :: name set ⇒ com ⇒ name set ⇒ bool

D A c A ′ should imply:

If all variables in A are initialized before c is
executed,
then no uninitialized variable is accessed during
execution,
and all variables in A ′ are initialized afterwards.
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D A SKIP A

vars a ⊆ A

D A (x ::= a) ({x} ∪ A)

D A1 c1 A2 D A2 c2 A3

D A1 (c1; c2) A3

vars b ⊆ A D A c1 A1 D A c2 A2

D A (IF b THEN c1 ELSE c2) (A1 ∩ A2)

vars b ⊆ A D A c A ′

D A (WHILE b DO c) A

321



Correctness of D

• Things can go wrong:
execution may access uninitialized variable.

=⇒ We need a new, finger grained semantics.

• Big step semantics:
semantics longer, correctness proof shorter

• Small step semantics:
semantics shorter, correctness proof longer

For variety’s sake, we choose a big step semantics.
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state = name ⇒ nat option

where

datatype ′a option = None | Some ′a

Notation: s(x 7→ y) means s(x := Some y)

Definition: dom s = {a | s a 6= None}
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Expression evaluation

aval :: aexp ⇒ state ⇒ val option

aval (N i) s = Some i

aval (V x) s = s x

aval (Plus a1 a2) s =
(case (aval a1 s, aval a2 s) of

(Some i1, Some i2) ⇒ Some(i1+i2)
| ⇒ None)
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bval :: bexp ⇒ state ⇒ bool option

bval (B bv) s = Some bv

bval (Not b) s =
(case bval b s of None ⇒ None
| Some bv ⇒ Some (¬ bv))

bval (And b1 b2) s =
(case (bval b1 s, bval b2 s) of

(Some bv1, Some bv2) ⇒ Some(bv1 ∧ bv2)
| ⇒ None)

bval (Less a1 a2) s =
(case (aval a1 s, aval a2 s) of

(Some i1, Some i2) ⇒ Some(i1 < i2)
| ⇒ None)
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Big step semantics

(com, state) ⇒ state option

A small complication:

(c1, s1) ⇒ Some s2 (c2, s2) ⇒ s

(c1; c2, s1) ⇒ s

(c1, s1) ⇒ None

(c1; c2, s1) ⇒ None

More convenient, because compositional:

(com, state option) ⇒ state option
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Error (None) propagates:

(c, None) ⇒ None

Execution starting in (mostly) normal states (Some s):

(SKIP, s) ⇒ s

aval a s = Some i

(x ::= a, Some s) ⇒ Some (s(x 7→ i))

aval a s = None

(x ::= a, Some s) ⇒ None

(c1, s1) ⇒ s2 (c2, s2) ⇒ s3

(c1; c2, s1) ⇒ s3
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bval b s = Some True (c1, Some s) ⇒ s ′

(IF b THEN c1 ELSE c2, Some s) ⇒ s ′

bval b s = Some False (c2, Some s) ⇒ s ′

(IF b THEN c1 ELSE c2, Some s) ⇒ s ′

bval b s = None

(IF b THEN c1 ELSE c2, Some s) ⇒ None
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bval b s = Some False

(WHILE b DO c, Some s) ⇒ Some s

bval b s = Some True
(c, Some s) ⇒ s ′ (WHILE b DO c, s ′) ⇒ s ′′

(WHILE b DO c, Some s) ⇒ s ′′

bval b s = None

(WHILE b DO c, Some s) ⇒ None
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Correctness of D w.r.t. ⇒
We want in the end:

Well-initialized programs cannot go wrong.

If D (dom s) c A ′ and (c, Some s) ⇒ s ′

then s ′ 6= None.

We need to prove a generalized statement:

If (c, Some s) ⇒ s ′ and D A c A ′ and A ⊆ dom s
then ∃ t. s ′ = Some t ∧ A ′ ⊆ dom t.

By rule induction on (c, Some s) ⇒ s ′.
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Proof needs some easy lemmas:

vars a ⊆ dom s =⇒ ∃ i. aval a s = Some i

vars b ⊆ dom s =⇒ ∃ bv. bval b s = Some bv

D A c A ′ =⇒ A ⊆ A ′
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Motivation

Consider the following program (where x 6= y):

x ::= Plus (V y) (N 1);
y ::= N 5;
x ::= Plus (V y) (N 3)

The first assignment is redundant and can be removed
because x is dead at that point.
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Semantically, a variable x is live before command c
if the initial value of x can influence the final state.

As a sufficient condition, we call x live before c
if there is some potential execution of c
where x is read before it is (possibly) written.
Implicitly, every variable is read at the end of c.

Examples: Is x initially dead or live?
x ::= N 0 /
y ::= V x; y ::= N 0; x ::= N 0 ,
WHILE b DO y ::= V x; x ::= N 1 ,
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At the end of a command, we may be interested in the
value of only some of the variables, e.g. only the global
variables at the end of a procedure.

Then we say that x is live before c relative to the set of
variables X.
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Liveness analysis
L :: com ⇒ name set ⇒ name set

L c X = live before c relative to X

L SKIP X = X
L (x ::= a) X = X − {x} ∪ vars a
L (c1; c2) X = (L c1 ◦ L c2) X
L (IF b THEN c1 ELSE c2) X =

vars b ∪ L c1 X ∪ L c2 X
L (WHILE b DO c) X = vars b ∪ X ∪ L c X

Examples:
L (1 ::= V 2; 0 ::= Plus (V 1) (V 2)) {0} = {2}
L (WHILE Less (V 0) (V 0) DO 1 ::= V 2) {0}= {0,2}
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Gen/kill analyses

A data-flow analysis A :: com ⇒ T set ⇒ T set
is called gen/kill analysis
if there are functions gen and kill such that

A c X = X − kill c ∪ gen c

Gen/kill analyses are extremely well-behaved, e.g.

X1 ⊆ X2 =⇒ A c X1 ⊆ A c X2

A c (X1 ∩ X2) = A c X1 ∩ A c X2

All the “standard” data-flow analyses are gen/kill.
In particular liveness analysis.
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Liveness via gen/kill

kill :: com ⇒ name set

kill SKIP = ∅
kill (x ::= a) = {x}
kill (c1; c2) = kill c1 ∪ kill c2
kill (IF b THEN c1 ELSE c2) = kill c1 ∩ kill c2
kill (WHILE b DO c) = ∅
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gen :: com ⇒ name set

gen SKIP = ∅
gen (x ::= a) = vars a
gen (c1; c2) = gen c1 ∪ (gen c2 − kill c1)
gen (IF b THEN c1 ELSE c2) =

vars b ∪ gen c1 ∪ gen c2
gen (WHILE b DO c) = vars b ∪ gen c
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L c X = X − kill c ∪ gen c

Proof by induction on c.

An easy but important consequence for later:

L c (L w X) ⊆ L w X where w = WHILE b DO c

Do not try to prove this from the original definition of L!
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Definite assignment via gen/kill

A c X: the set of variables initialized after c
if X was initialized before c

How to obtain A c X = X − kill c ∪ gen c:

gen SKIP = ∅
gen (x ::= a) = {x}
gen (c1; c2) = gen c1 ∪ gen c2
gen (IF b THEN c1 ELSE c2) = gen c1 ∩ gen c2
gen (WHILE b DO c) = ∅

kill c = ∅
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(.,.) ⇒ . and L should roughly be related like this:

The value of the final state on X
only depends on
the value of the initial state on L c X.

Put differently:

If two initial states agree on L c X
then the corresponding final states agree on X.
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Equality on

An abbreviation:

f = g on X ≡ ∀ x ∈ X. f x = g x

Two easy theorems (in theory Vars):

s1 = s2 on vars a =⇒ aval a s1 = aval a s2
s1 = s2 on vars b =⇒ bval b s1 = bval b s2
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Soundness of L

If (c, s) ⇒ s ′ and s = t on L c X
then ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ on X.

Proof by rule induction
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Bury all assignments to dead variables:

bury :: com ⇒ name set ⇒ com

bury SKIP X = SKIP
bury (x ::= a) X = if x ∈ X then x ::= a else SKIP
bury (c1; c2) X = bury c1 (L c2 X); bury c2 X
bury (IF b THEN c1 ELSE c2) X =

IF b THEN bury c1 X ELSE bury c2 X
bury (WHILE b DO c) X =

WHILE b DO bury c (vars b ∪ X ∪ L c X)
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Soundness of bury

(bury c UNIV, s) ⇒ s ′ ←→ (c, s) ⇒ s ′

where UNIV is the set of all variables.

The two directions need to be proved separately.
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(c, s) ⇒ s ′ =⇒ (bury c UNIV, s) ⇒ s ′

Follows from generalized statement:

If (c, s) ⇒ s ′ and s = t on L c X
then ∃ t ′. (bury c X, t) ⇒ t ′ ∧ s ′ = t ′ on X.

Proof by rule induction, like for soundness of L.
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(bury c UNIV, s) ⇒ s ′ =⇒ (c, s) ⇒ s ′

Follows from generalized statement:

If (bury c X, s) ⇒ s ′ and s = t on L c X
then ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ on X.

Proof very similar to other direction, but needs inversion
lemmas for bury for every kind of command, e.g.

(bc1; bc2 = bury c X) =
(∃ c1 c2.

c = c1; c2 ∧
bc2 = bury c2 X ∧ bc1 = bury c1 (L c2 X))
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Comparison of analyses

• Definite assignment analysis is a
forward must analysis:
• it analyses the executions starting from some point,
• variables must be assigned (on every program path)

before they are used.

• Live variable analysis is a
backward may analysis:
• it analyses the executions ending in some point,
• live variables may be used (on some program path)

before they are assigned.
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Comparison of DFA frameworks
Program representation:
• Traditionally (e.g. Aho/Sethi/Ullman), DFA is

performed on control flow graphs (CFGs).
Application: optimization of intermediate or
low-level code.

• We analyse structured programs.
Application: source-level program optimization.

Algorithm:
• Gen/kill analyses on arbitrary CFGs may require a

finite number of iterations before a (least or
greatest) solution is reached.

• Gen/kill analyes of structured programs do not
require iterations.
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The aim:
Ensure that programs protect private data
like passwords, bank details, or medical records.
There should be no information flow
from private data into public channels.

This is know as information flow control.
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Language based security is an approach to information
flow control where data flow analysis is used to determine
whether a program is free of illicit information flows.

LBS guarantees confidentiality by program analysis,
not by cryptography.

These analyses are often expressed as type systems.
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Security levels

• Program variables have
security/confidentiality levels.

• Security levels are partially ordered:
l < l′ means that l is less confidential than l′.

• We identify security levels with nat.
Level 0 is public.

• Other popular choices for security levels:
• only two levels, high and low.
• the set of security levels is a lattice.
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Two kinds of illicit flows

Explicit: low := high

Implicit: if high1 = high2 then low := 1

else low := 0
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Noninterference

High variables do not interfere with low ones.

A variation of confidential input does not cause
a variation of public output.

Program c guarantees noninterference iff for all s1, s2:

If s1 and s2 agree on low variables
(but may differ on high variables!),
then the states resulting from executing (c, s1)
and (c, s2) must also agree on low variables.
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Security levels:

types level = nat

Every variable has a security level:

sec :: name ⇒ level

No definition is needed. Except for examples.
Hence we define (arbitrarily)

sec n = n
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The security level of an expression is the maximal
security level of any of its variables.

sec :: aexp ⇒ level

sec (N n) = 0
sec (V x) = sec x
sec (Plus a1 a2) = max (sec a1) (sec a2)

sec :: bexp ⇒ level

sec (B bv) = 0
sec (Not b) = sec b
sec (And b1 b2) = max (sec b1) (sec b2)
sec (Less a1 a2) = max (sec a1) (sec a2)
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Agreement of states up to a certain level:

s1 = s2 (≤ l) ≡ ∀ x. sec x ≤ l −→ s1 x = s2 x

s1 = s2 (< l) ≡ ∀ x. sec x < l −→ s1 x = s2 x

Noninterference for expressions:

[[s1 = s2 (≤ l); sec a ≤ l]] =⇒ aval a s1 = aval a s2
[[s1 = s2 (≤ l); sec b ≤ l]] =⇒ bval b s1 = bval b s2
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Explicit flows are easy. How to check for implicit flows:

Carry the security level of the boolean expressions around
that guard the current command.

The well-typedness predicate:

l ` c

Intended meaning:
“In the context of boolean expressions of level ≤ l,
command c is well-typed.”

Hence:
“Assignments to variables of level < l are forbidden.”
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Well-typed or not?

0 ` IF Less (V 0) (V 1) THEN 1 ::= N 0 ELSE SKIP

1 ` IF Less (V 0) (V 1) THEN 1 ::= N 0 ELSE SKIP

2 ` IF Less (V 0) (V 1) THEN 1 ::= N 0 ELSE SKIP
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The type system

l ` SKIP

sec a ≤ sec x l ≤ sec x

l ` x ::= a

l ` c1 l ` c2

l ` c1; c2

max (sec b) l ` c1 max (sec b) l ` c2

l ` IF b THEN c1 ELSE c2

max (sec b) l ` c

l ` WHILE b DO c
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Remark:

l ` c is syntax-directed and executable.
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Anti-monotonicity

l ` c l ′ ≤ l

l ′ ` c

Proof by . . . as usual.

This is often called a subsumption rule
because it says that larger levels subsume smaller ones.
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Confinement

If l ` c then c cannot modify variables of level < l:

(c, s) ⇒ t l ` c

s = t (< l)

The effect of c is confined to variables of level ≥ l.

Proof by . . . as usual.

371



Noninterference

(c, s) ⇒ s ′ (c, t) ⇒ t ′ 0 ` c s = t (≤ l)

s ′ = t ′ (≤ l)

Proof by . . . as usual.
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The l ` c system is intuitive and executable

• but in the literature a more elegant formulation is
dominant

• which does not need max

• and works for arbitrary partial orders.

This alternative system l ` ′ c has an explicit
subsumption rule

l ` ′ c l ′ ≤ l

l ′ ` ′ c

together with one rule per construct:
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l ` ′ SKIP

sec a ≤ sec x l ≤ sec x

l ` ′ x ::= a

l ` ′ c1 l ` ′ c2
l ` ′ c1; c2

sec b ≤ l l ` ′ c1 l ` ′ c2
l ` ′ IF b THEN c1 ELSE c2

sec b ≤ l l ` ′ c
l ` ′ WHILE b DO c
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• The subsumption-based system ` ′
is neither syntax-directed nor directly executable.

• One needs to guess
where to use a subsumption rule in the derivation.
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Equivalence of ` and ` ′

l ` c =⇒ l ` ′ c

Proof by induction.
Use subsumption directly below IF and WHILE.

l ` ′ c =⇒ l ` c

Proof by induction. Subsumption already a lemma for `.
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• Systems l ` c and l ` ′ c are top-down:
level l comes from the context
and is checked at ::= commands.

• System ` c : l is bottom-up:
l is the minimal level of any variable assigned in c
and is checked at IF and WHILE commands.
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` SKIP : l

sec a ≤ sec x

` x ::= a : sec x

` c1 : l1 ` c2 : l2

` c1; c2 : min l1 l2

sec b ≤ min l1 l2 ` c1 : l1 ` c2 : l2

` IF b THEN c1 ELSE c2 : min l1 l2

sec b ≤ l ` c : l

` WHILE b DO c : l
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Equivalence of ` : and ` ′

` c : l =⇒ l ` ′ c

Proof by induction.

l ` ′ c =⇒ ` c : l

Nitpick says: 0 ` ′ 1 ::= N 1 but not ` 1 ::= N 1 : 0

l ` ′ c =⇒ ∃ l ′≥l. ` c : l ′

Proof by induction.
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Does noninterference really guarantee
absence of information flow?

(c, s) ⇒ s ′ (c, t) ⇒ t ′ 0 ` c s = t (≤ l)

s ′ = t ′ (≤ l)

Beware of covert channels!

0 ` WHILE Less (V 1) (N 1) DO SKIP

383



A drastic solution:

WHILE-conditions must not depend on
confidential data.

New typing rule:

sec b = 0 0 ` c

0 ` WHILE b DO c

Now provable:

(c, s) ⇒ s ′ 0 ` c s = t (≤ l)

∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ (≤ l)
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Further extensions

• Time

• Probability

• Quantitative analysis
• More programming language features:

• exceptions
• concurrency
• OO
• . . .
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The inventors of security type systems are
Volpano and Smith.

For an excellent survey see

Sabelfeld and Myers. Language-Based
Information-Flow Security. 2003.
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We have proved functional programs correct
(e.g. a compiler).

We have proved properties of imperative languages
(e.g. type safety).

But how do we prove properties of imperative programs?

391



An example program:

0 ::= N 0; 1 ::= N 0; w n

where

w n ≡
WHILE Less (V 1) (N n)
DO (1 ::= Plus (V 1) (N 1);

0 ::= Plus (V 0) (V 1))

At the end of the execution,
variable 0 should contain the sum 1 + . . . + n.
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A proof via operational semantics

Theorem:

(0 ::= N 0; 1 ::= N 0; w n, s) ⇒ t =⇒
t 0 =

∑
{1..n}

Required Lemma:

(w n, s) ⇒ t =⇒
t 0 = s 0 +

∑
{s 1 + 1..n}

Proved by induction.

393



Hoare Logic provides a structured approach for reasoning
about properties of states during program execution:

• Rules of Hoare Logic (almost) syntax directed

• Automates reasoning about program execution

• No explicit induction

But no free lunch:

• Must prove implications between predicates on
states

• Needs invariants.
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This is the standard approach.

Formulas are syntactic objects.

Everything is very concrete and simple.

But complex to formalize.

Hence we soon move to a semantic view of formulas.

Reason for introduction of syntactic approach: didactic

For now, we work with a (syntactically) simplified version
of IMP.
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Hoare Logic reasons about Hoare triples {P} c {Q}
where

• P and Q are syntactic formulas
involving program variables

• P is the precondition, Q is the postcondition

• {P} c {Q} means that
if P is true at the start of the execution,
Q is true at the end of the execution
— if the execution terminates! (partial correctness)

Informal example:

{x = 41} x := x + 1 {x = 42}

Terminology: P and Q are called assertions.
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Examples

{x = 5} ? {x = 10}
{True} ? {x = 10}
{x = y} ? {x 6= y}

Boundary cases:

{True} ? {True}
{True} ? {False}
{False} ? {Q}
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The rules of Hoare Logic

{P} SKIP {P}

{Q[a/x]} x := a {Q}

Notation: Q[a/x] means “Q with a substituted for x”.

Examples: { } x := 5 {x = 5}
{ } x := x+5 {x = 5}
{ } x := 2∗(x+5) {x > 20}

Intuitive explanation of backward-looking rule:

{Q[a]} x := a {Q[x]}

Afterwards we can replace all occurrences of a in Q by x.
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The assignment axiom allows us
to compute the precondition from the postcondition.

There is a version to compute the postcondition from
the precondition, but it is more complicated. (Exercise!)
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More rules of Hoare Logic

{P1} c1 {P2} {P2} c2 {P3}
{P1} c1;c2 {P3}

{P ∧ b} c1 {Q} {P ∧ ¬ b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P}
{P} WHILE b DO c {P ∧ ¬ b}

In the While-rule, P is called an invariant because it is
preserved across executions of the loop body.
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The consequence rule

So far, the rules were syntax-directed. Now we add

P ′ −→ P {P} c {Q} Q −→ Q ′

{P ′} c {Q ′}

Preconditions can be strengthened,
postconditions can be weakened.
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Two derived rules

Problem with assignment and While-rule:
special form of pre and postcondition.
Better: combine with consequence rule.

P −→ Q[a/x]

{P} x := a {Q}

{P ∧ b} c {P} P ∧ ¬ b −→ Q

{P} WHILE b DO c {Q}
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Example

{True}
x := 0; y := 0;
WHILE y < n DO (y := y+1; x := x+y)

{x =
∑
{1..n}}
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Example proof exhibits key properties of Hoare logic:

• Choice of rules is syntax-directed and hence
automatic.

• Proof of “;” proceeds from right to left.

• Proofs require only invariants and
arithmetic reasoning.
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Assertions are predicates on states

assn = state ⇒ bool

Alternative view: sets of states

Semantic approach simplifies meta-theory, our main
objective.
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Validity

|= {P} c {Q}
←→

∀ s t. (c, s) ⇒ t −→ P s −→ Q t

“{P} c {Q} is valid”

In contrast:

` {P} c {Q}

“{P} c {Q} is provable/derivable”
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Provability

` {P} SKIP {P}

` {λs. Q (s[a/x])} x ::= a {Q}
where s[a/x] ≡ s(x := aval a s)

Example: {5 = 5} x := 5 {x = 5} in semantic terms:

` {P} 0 ::= N 5 {λs. s 0 = 5}

where P = (λs. (s[N 5/0]) 0 = 5) = (λs. 5 = 5)

409



` {P} c1 {Q} ` {Q} c2 {R}
` {P} c1; c2 {R}

` {λs. P s ∧ bval b s} c1 {Q}
` {λs. P s ∧ ¬ bval b s} c2 {Q}
` {P} IF b THEN c1 ELSE c2 {Q}

` {λs. P s ∧ bval b s} c {P}
` {P} WHILE b DO c {λs. P s ∧ ¬ bval b s}
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∀ s. P ′ s −→ P s
` {P} c {Q}
∀ s. Q s −→ Q ′ s

` {P ′} c {Q ′}
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Hoare_Examples.thy
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Soundness

Everything that is provable is valid:

` {P} c {Q} =⇒ |= {P} c {Q}

Proof by induction, with a nested induction in the
While-case.

414



Towards completeness: |= =⇒ `
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Weakest preconditions

The weakest precondition
of command c w.r.t. postcondition Q:

wp c Q = (λs. ∀ t. (c, s) ⇒ t −→ Q t)

The set of states that lead (via c) into Q.

A foundational semantic notion, not merely for the
completeness proof.
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Nice and easy properties of wp
wp SKIP Q = Q

wp (x ::= a) Q = (λs. Q (s[a/x]))

wp (c1; c2) Q = wp c1 (wp c2 Q)

wp (IF b THEN c1 ELSE c2) Q =
(λs. (bval b s −→ wp c1 Q s) ∧

(¬ bval b s −→ wp c2 Q s))

¬ bval b s =⇒ wp (WHILE b DO c) Q s = Q s

bval b s =⇒
wp (WHILE b DO c) Q s =
wp (c; WHILE b DO c) Q s
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Completeness

|= {P} c {Q} =⇒ ` {P} c {Q}

Follows easily if we can prove

` {wp c Q} c {Q}

Proof by induction on c, for arbitary Q.
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Proving program properties by Hoare logic (`)
is just as powerful as by operational semantics (|=).
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WARNING

Most texts that discuss completeness of Hoare logic
state or prove that Hoare logic is only “relatively
complete” but not complete.

Reason: the standard notion of completeness assumes
some abstract mathematical notion of |=.

Our notion of |= is defined within the same (limited)
proof system (for HOL) as `.
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Idea:
Reduce provability in Hoare logic to provability
in the assertion language:
automate the Hoare logic part of the problem.

More precisely:

Generate an assertion C, the verification
condition, from {P} c {Q} such that
` {P} c {Q} iff C is provable.

Method:
Simulate syntax-directed application of Hoare
logic rules. Collect all assertion language side
conditions.
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A problem: loop invariants

Where do they come from?

A trivial solution:

Let the user provide them!

How?

Each loop must be annotated with its invariant!
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How to synthesize loop invariants automatically
is a difficult research problem.

Which we ignore here.
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Terminology:

VCG = Verification Condition Generator

All successful verification technology for imperative
programs relies on

• VCGs (of one kind or another)

• and powerful (semi-)automatic theorem provers.
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The (approx.) plan of attack

1 Introduce annotated commands with loop invariants

2 Define functions for computing
• weakest proconditions: pre :: com ⇒ assn ⇒ assn
• verification conditions: vc :: com ⇒ assn ⇒ assn

3 Soundness: vc c Q =⇒ ` { ? } c {Q}

4 Completeness: if ` {P} c {Q} then c can be
annotated (becoming c ′) such that vc c ′ Q.

The details are a bit different . . .

426



Annotated commands

Like commands . . .

datatype acom = Askip

| Aassign name aexp

| Asemi acom acom

| Aif bexp acom acom

| Awhile bexp assn acom

. . . but with an assertion I in Awhile b I c.

427



Example:

Awhile (Less (V 1) (N 5))
(λs. s 1 = 0)
(Aassign 1 (N 1))
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Weakest precondition
pre :: acom ⇒ assn ⇒ assn

pre Askip Q = Q

pre (Aassign x a) Q = (λs. Q (s[a/x]))

pre (Asemi c1 c2) Q = pre c1 (pre c2 Q)

pre (Aif b c1 c2) Q =
(λs. (bval b s −→ pre c1 Q s) ∧

(¬ bval b s −→ pre c2 Q s))

pre (Awhile b I c) Q = I
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Warning

In the presence of loops,
pre c may not be the weakest precondition

but may be anything!
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Verification condition
vc :: acom ⇒ assn ⇒ assn

vc Askip Q = (λs. True)

vc (Aassign x a) Q = (λs. True)

vc (Asemi c1 c2) Q =
(λs. vc c1 (pre c2 Q) s ∧ vc c2 Q s)

vc (Aif b c1 c2) Q = (λs. vc c1 Q s ∧ vc c2 Q s)

vc (Awhile b I c) Q =
(λs. (I s ∧ ¬ bval b s −→ Q s) ∧

(I s ∧ bval b s −→ pre c I s) ∧ vc c I s)
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Verification conditions only arise from loops:

• the invariant must be invariant

• and it must imply the postcondition.

Everything else in the definition of vc is just bureaucracy:
collecting assertions and passing them around.
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Hoare triples operate on com,
functions pre and vc operate on acom.
Therefore we define

astrip :: acom ⇒ com

astrip Askip = SKIP
astrip (Aassign x a) = x ::= a
astrip (Asemi c1 c2) = astrip c1; astrip c2
astrip (Aif b c1 c2) =
IF b THEN astrip c1 ELSE astrip c2
astrip (Awhile b I c) = WHILE b DO astrip c
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Soundness of vc & pre w.r.t. `
∀ s. vc c Q s =⇒ ` {pre c Q} astrip c {Q}

Proof by induction on c, for arbitrary Q.

Corolllary:

(∀ s. vc c Q s) ∧ (∀ s. P s −→ pre c Q s) =⇒
` {P} astrip c {Q}

How to prove some ` {P} c0 {Q}:
• Annotate c0 yielding c, i.e. astrip c = c0.

• Prove Hoare-free premise of corollary.

But is premise provable if ` {P} c0 {Q} is?
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(∀ s. vc c Q s) ∧ (∀ s. P s −→ pre c Q s) =⇒
` {P} astrip c {Q}

Why could premise not be provable
although conclusion is?

• Some annotation in c is not invariant.

• vc or pre are wrong
(e.g. accidentally always produce False).

Therefore we prove completeness:
suitable annotations exist such that premise is provable.
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Completeness of vc & pre w.r.t. `

` {P} c {Q} =⇒
∃ c ′. astrip c ′ = c ∧

(∀ s. vc c ′ Q s) ∧ (∀ s. P s −→ pre c ′ Q s)

Proof by rule induction. Needs two monotonicity
lemmas:

[[∀ s. P s −→ P ′ s; pre c P s]] =⇒ pre c P ′ s

[[∀ s. P s −→ P ′ s; vc c P s]] =⇒ vc c P ′ s
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• Partial Correctness:
if command terminates, postcondition holds

• Total Correctness:
command terminates and postcondition holds

Total Correctness = Partial Correctness + Termination

Formally:

|=t {P} c {Q} ≡ ∀ s. P s −→ (∃ t. (c, s) ⇒ t ∧ Q t)

Assumes that semantics is deterministic!

Exercise: Reformulate for nondeterministic language
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`t: A proof system
for total correctness

Only need to change the While-rule.

Some measure function state ⇒ nat
must decrease with every loop iteration∧

n. `t {λs. P s ∧ bval b s ∧ f s = n} c {λs. P s ∧ f s < n}
`t {P} WHILE b DO c {λs. P s ∧ ¬ bval b s}
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HoareT.thy

Example
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Soundness

`t {P} c {Q} =⇒ |=t {P} c {Q}

Proof by induction, with a nested induction (on what?)
in the While-case.
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Completeness

|=t {P} c {Q} =⇒ `t {P} c {Q}

Follows easily from

`t {wpt c Q} c {Q}

where

wpt c Q ≡ λs. ∃ t. (c, s) ⇒ t ∧ Q t.
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Proof of `t {wpt c Q} c {Q} is by induction on c.

In the WHILE b DO c case, let f s (in the `t rule for
While) be the number of iterations that the loop needs if
started in state s.

This f depends on b and c and is definable in HOL.
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New commands

Declare local variable: {VAR x;; c}
Define local procedure: {PROC p = c;; c ′}
Call procedure: CALL p
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Concrete syntax

com ::= . . . basic commands . . .

| {VAR name;; com}
| {PROC name = com;; com}
| CALL name
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Abstract syntax

datatype com = . . . basic commands . . .

| Var name com

| Proc name com com

| CALL name
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Scoping

Static scoping
Name n refers to the textually enclosing
declaration of n in the program text.

Dynamic scoping
Name n refers to the most recent declaration
of n during execution.
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Example

{VAR 0;; 0 ::= N 0;
{PROC 0 = 0 ::= Plus (V 0) (V 0);;
{PROC 1 = CALL 0;;
{VAR 0;; 0 ::= N 5;
{PROC 0 = 0 ::= Plus (V 0) (N 1);;
CALL 1; 1 ::= V 0}}}}}

What is the final value of variable 1 ?

• static scope for VAR and PROC

• dynamic scope for VAR and static scope for PROC

• dynamic scope for VAR and PROC
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C does not allow nested procedures,
which simplifies the semantics.

Most functional languages allow nested procedures.

As does Java, via inner classes.

Dynamic scoping is a concept from hell and rarely used.

But its semantics is easy to define
and a good starting point.
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Procedure environment

penv = name ⇒ com

Big-step semantics:

pe ` (c, s) ⇒ t

where pe :: penv.
Rules for basic commands are upgraded by adding pe `.
Example:

pe ` (c1, s1) ⇒ s2 pe ` (c2, s2) ⇒ s3

pe ` (c1; c2, s1) ⇒ s3
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Rules for new commands

pe ` (c, s) ⇒ t

pe ` ({VAR x;; c}, s) ⇒ t(x := s x)

pe(p := cp) ` (c, s) ⇒ t

pe ` ({PROC p = cp;; c}, s) ⇒ t

pe ` (pe p, s) ⇒ t

pe ` (CALL p, s) ⇒ t

Dynamic scoping because pe(n) and s(n)
are the current values of n w.r.t. execution.
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The static environment for a procedure p is the
procedure environment at the point where p is declared,
i.e. the static links to the procedures known at that
point.

Recorde the static environment for each procedure
together with the procedure body:

penv = name ⇒ com × penv

Recursive type synonyms not allowed.
Alternative: organize procedure environment like a stack.

penv = (name × com) list

The static environment of p is the penv before (p, ) was
added: pop until (p, ) is found.

458



Rules for new commands

pe ` (c, s) ⇒ t

pe ` ({VAR x;; c}, s) ⇒ t(x := s x)

(p, cp) # pe ` (c, s) ⇒ t

pe ` ({PROC p = cp;; c}, s) ⇒ t

(p, c) # pe ` (c, s) ⇒ t

(p, c) # pe ` (CALL p, s) ⇒ t

p ′ 6= p pe ` (CALL p, s) ⇒ t

(p ′, c) # pe ` (CALL p, s) ⇒ t
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Separate variable names from their storage addresses.
The same x can have different addresses at different
points in the program.

addr = nat

A variable environment associates names with addresses:

venv = name ⇒ addr

A store associates addresses with values:

store = addr ⇒ nat

Note: If s :: store and ve :: venv then s ◦ ve :: state.
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The static environment for each procedure p records
both

• the procedure environment and

• the variable environment

at the point where p is declared.

The procedure environment is recorded as before (in the
stack), the variable environment explicitly:

penv = (name × venv × com) list

Interpretation of (p, ve, c):
variable x in c refers to address ve(x).
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Big-step format
Execution takes place in the context of

• a procedure environment pe

• a variable environment ve

• a free address f

Instead of a state, the semantics transforms a store s:

(pe,ve,f) ` (c, s) ⇒ t

Execution also modifies the context, but input/output
behaviour is captured by the store transformation.

Auxiliary function: venv (pe, ve, f) = ve
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Rules for basic commands

e ` (SKIP, s) ⇒ s

(pe, ve, f) ` (x ::= a, s) ⇒ s(ve x := aval a (s ◦ ve))

e ` (c1, s1) ⇒ s2 e ` (c2, s2) ⇒ s3

e ` (c1; c2, s1) ⇒ s3

bval b (s ◦ venv e) e ` (c1, s) ⇒ t

e ` (IF b THEN c1 ELSE c2, s) ⇒ t

¬ bval b (s ◦ venv e) e ` (c2, s) ⇒ t

e ` (IF b THEN c1 ELSE c2, s) ⇒ t
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¬ bval b (s ◦ venv e)

e ` (WHILE b DO c, s) ⇒ s

bval b (s1 ◦ venv e)
e ` (c, s1) ⇒ s2 e ` (WHILE b DO c, s2) ⇒ s3

e ` (WHILE b DO c, s1) ⇒ s3
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Rules for new commands

(pe, ve(x := f), f + 1) ` (c, s) ⇒ t

(pe, ve, f) ` ({VAR x;; c}, s) ⇒ t(x := s x)

((p, cp, ve) # pe, ve, f) ` (c, s) ⇒ t

(pe, ve, f) ` ({PROC p = cp;; c}, s) ⇒ t

((p, c, ve) # pe, ve, f) ` (c, s) ⇒ t

((p, c, ve) # pe, ve ′, f) ` (CALL p, s) ⇒ t

p ′ 6= p (pe, ve, f) ` (CALL p, s) ⇒ t

((p ′, c, ve ′) # pe, ve, f) ` (CALL p, s) ⇒ t
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Motto

Addresses are numbers, too!

We take full advantage of
state = nat ⇒ nat
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Arithmetic expressions

datatype aexp = N nat

| Deref aexp

| Plus aexp aexp

• Syntax: ! a ≡ Deref a

• Pronounced “contents of a”

• Allows terms like ! (Plus (! (N 5)) (N 2)) .
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Why no variables?

Numbers are addresses are variables.

Instead of V 1 we now write ! (N 1) .

C has variables, but you can obtain their address.

We work directly with addresses.
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aval and bval

aval :: aexp ⇒ state ⇒ nat

aval (N n) s = n
aval (! a) s = s (aval a s)
aval (Plus a1 a2) s = aval a1 s + aval a2 s

Function bval remains unchanged.
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Assignment

aexp ::= aexp

Left-hand side is address, righ-hand side is value.
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Memory allocation

A new command:

New aexp aexp

New a k allocates a storage block of size k
and stores the start address at address a.

Why not make New k an aexp
that returns the start address as its value?
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Big-step semantics

(com, state, nat) ⇒ (state, nat)

• The nat-component is the first free address.

• Everything beyond that address is free, too.

• This free pointer increases monotonically.

• There is no garbage collection.

• This is a very concrete storage allocation policy.

• More abstract nondeterministic models are possible
but sacrifice executability.
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In Isabelle, tuples are nested pairs:

(a, b, c) ≡ (a, (b, c))

τ 1 × τ 2 × τ 3 ≡ τ 1 × (τ 2 × τ 3)

=⇒ big step is of type

com × (state × nat) ⇒ (state × nat) ⇒ bool
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Big-step rules

(SKIP, sn) ⇒ sn

(lhs ::= a, s, n) ⇒ (s(aval lhs s := aval a s), n)

(New lhs a, s, n) ⇒ (s(aval lhs s := n), n + aval a s)

(c1, sn1) ⇒ sn2 (c2, sn2) ⇒ sn3

(c1; c2, sn1) ⇒ sn3
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Big-step rules

bval b s (c1, s, n) ⇒ tn

(IF b THEN c1 ELSE c2, s, n) ⇒ tn

¬ bval b s (c2, s, n) ⇒ tn

(IF b THEN c1 ELSE c2, s, n) ⇒ tn

477



Big-step rules

¬ bval b s

(WHILE b DO c, s, n) ⇒ (s, n)

bval b s1
(c, s1, n) ⇒ sn2 (WHILE b DO c, sn2) ⇒ sn3

(WHILE b DO c, s1, n) ⇒ sn3
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How does assignment differ from C?

In C (and most imperative languages),
the lhs and the rhs are evaluated differently:

• on the lhs, a variable represents its address,

• on the rhs, a variable represents its value.

We use ! to achieve the same effect.
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Some array and pointer algorithms
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Array summation example

Variables:

! (N 0) = address of first element of array

! (N 1) = address of last element of array

! (N 2) = sum, initially 0

WHILE Less (! (N 0)) (Plus (! (N 1)) (N 1))
DO (N 2 ::= Plus (! (N 2)) (! (! (N 0)));

N 0 ::= Plus (! (N 0)) (N 1))
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Linked list creation example
Variables:

! (N 0) = number of elements to be created

! (N 1) = counter, initially 0

! (N 2) = head of list, initially 0

! (N 3) = aux

List element: (list size, next pointer)

WHILE Less (! (N 1)) (! (N 0))
DO (New (N 3) (N 2); N 1 ::= Plus (! (N 1)) (N 1);

! (N 3) ::= ! (N 1);
Plus (! (N 3)) (N 1) ::= ! (N 2); N 2 ::= ! (N 3))
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Motto

Everything is an object!

Even natural numbers.
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Design decisions

• Every language construct is an expression.

• Every expression evaluates to an object reference.
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Expressions exp

Null

New

V string Variable access

exp·string Field access

string ::= exp Variable assignment

exp·string ::= exp Field assignment

exp·string<exp> Method call

exp; exp

IF bexp THEN exp ELSE exp
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• Why no SKIP?

• Why no WHILE?

• Why no multiple parameters?
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Boolean expressions bexp

bexp = B bool | Not bexp | And bexp bexp | Eq exp exp
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A case of mutually recursive
data types

datatype exp = . . . exp . . . bexp . . .
and bexp = . . . bexp . . . exp . . .
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References, objects, stores

A reference is null or an address (nat):

datatype ref = null | Ref nat

An object maps field names to references:

obj = string ⇒ ref

A store maps addresses to objects:

store = nat ⇒ obj
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Environments

A variable environment maps variable names to
references:

venv = string ⇒ ref

A method environment maps method names to bodies:

menv = string ⇒ exp
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Big-step semantics

menv ` (exp, config) ⇒ (ref, config)

where

config = venv × store × nat
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Big-step rules

me ` (Null, c) ⇒ (null, c)

me `
(New, ve, s, n) ⇒ (Ref n, ve, s(n := λf. null), n + 1)

me ` (V x, ve, sn) ⇒ (ve x, ve, sn)

me ` (e, c) ⇒ (Ref a, ve ′, s ′, n ′)

me ` (e·f, c) ⇒ (s ′ a f, ve ′, s ′, n ′)
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Big-step rules

me ` (e, c) ⇒ (r, ve ′, sn ′)

me ` (x ::= e, c) ⇒ (r, ve ′(x := r), sn ′)

me ` (oe, c1) ⇒ (Ref a, c2)
me ` (e, c2) ⇒ (r, ve3, s3, n3)

me ` (oe·f ::= e, c1) ⇒ (r, ve3, s3(a,f := r), n3)

where f(x,y := z) ≡ f(x := (f x)(y := z))
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Big-step rules

me ` (oe, c1) ⇒ (or, c2)
me ` (pe, c2) ⇒ (pr, ve3, sn3)

ve = (λx. null)( ′′this ′′ := or, ′′param ′′ := pr)
me ` (me m, ve, sn3) ⇒ (r, ve ′, sn4)

me ` (oe·m<pe>, c1) ⇒ (r, ve3, sn4)
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Big-step rules

me ` (e1, c1) ⇒ (r, c2) me ` (e2, c2) ⇒ c3

me ` (e1; e2, c1) ⇒ c3

me ` (b, c1) → (True, c2) me ` (e1, c2) ⇒ c3

me ` (IF b THEN e1 ELSE e2, c1) ⇒ c3

me ` (b, c1) → (False, c2) me ` (e2, c2) ⇒ c3

me ` (IF b THEN e1 ELSE e2, c1) ⇒ c3
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Evaluation of bexp

menv ` (bexp, config) → (bool, config)

The rules are the obvious ones.

A case of mutually inductive predicates:

inductive
big step :: menv ⇒ exp × config ⇒ ref × config ⇒ bool
and
bval :: menv ⇒ bexp × config ⇒ bool × config ⇒ bool
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Natural numbers as objects
• 0 is represented by null.

• n+1 is represented by an object with a predecessor
field that points to a representation of n.

Successor method:

( ′′s ′′ ::= New)· ′′pred ′′ ::= V ′′this ′′; V ′′s ′′

Addition method:

IF Eq (V ′′param ′′) Null THEN V ′′this ′′

ELSE V ′′this ′′· ′′succ ′′<Null>·
′′add ′′<V ′′param ′′· ′′pred ′′>
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OO?

Which central OO feature is missing?

Dynamic method binding

In oe·m<e>, the name m determines the method, the
object has no influence.

Two possible extensions:

• Attach the method body to each object,
like the fields.

• Superimpose a class system
and attach a class to each object.
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