
Technische Universität München WS 2011/12
Institut für Informatik 28. 10. 2010

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which
may be obtained from http://www4.in.tum.de/lehre/vorlesungen/semantik/WS1112/
IMP/. Copy them into the same directory as your Ex02.thy file, and add them to
your imports as follows:

theory Ex02
imports Main AExp BExp
begin

Exercise 2.1 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function syn subst :: name ⇒ aexp ⇒ aexp ⇒ aexp that performs a syntactic
substitution, i.e., syn subst x a ′ a shall be the expression a where every occurrence of
variable x has been replaced by expression a ′.

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst lemma: “aval (syn subst x a ′ a) s = aval a (s(x :=aval a ′ s))”

Note: The expression s(x := v) updates a function at point x. It is defined as:

f (a := b) = (λx . if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp:
“aval a1 s = aval a2 s =⇒ aval (syn subst x a1 a) s = aval (syn subst x a2 a) s”

1

http://www4.in.tum.de/lehre/vorlesungen/semantik/WS1112/IMP/
http://www4.in.tum.de/lehre/vorlesungen/semantik/WS1112/IMP/

Exercise 2.2 Arithmetic Expressions With Side-Effects and Exceptions

We want to extend arithmetic expressions by the division operation and by the postfix
increment operation x++, as known from Java or C++.

The problem with the division operation is that division by zero is not defined. In this
case, the arithmetic expression should evaluate to a special value indicating an exception.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
(val×state) option, i.e., it takes an expression and a state, and returns a value and a
new state, or an error value. Define the function aval ′.

(Hint: To make things easier, we recommend an incremental approach to this exercise:
First define arithmetic expressions with incrementing, but without division. The function
aval ′ for this intermediate language should have type aexp ′⇒ state ⇒ val×state. After
completing the entire exercise with this version, then modify your definitions to add
division and exceptions.)

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx . 0

value “aval ′ (Div ′ (V ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Div ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) < ′′x ′′:=1>”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval ′ inc: “aval ′ a s = Some (v ,s ′) =⇒ s x ≤ s ′ x”

Hint: If auto leaves you with some if or case statements in the assumptions, you may
use the split : split if asm option.split asm attribute.

Homework 2.1 Less Than or Equal

Submission until Wednesday, November 9, 12:00 (noon).

2

In our boolean expressions, there is no ≤ operator. Write a function that takes two
arithmetic expressions a1 and a2, and returns a boolean expression b, such that for all
s: bval b s ←→ aval a1 s ≤ aval a2 s. Prove that your function is correct.

definition ble :: “aexp ⇒ aexp ⇒ bexp” where

lemma “bval (ble a1 a2) s ←→ aval a1 s ≤ aval a2 s”

Homework 2.2 Tail-Recursive Form of Addition

Submission until Wednesday, November 9, 12:00 (noon).

The list-reversing function itrev is an example of a tail-recursive function: Note that
the right-hand side of the second equation for itrev is simply an application of itrev to
different arguments.

fun itrev :: “ ′a list ⇒ ′a list ⇒ ′a list” where
“itrev [] ys = ys” |
“itrev (x#xs) ys = itrev xs (x#ys)”

In this homework problem you will define a tail-recursive version of addition for natural
numbers, and prove that it is associative and commutative.

First, define a function add :: nat ⇒ nat ⇒ nat in Isabelle that calculates the sum of its
arguments. Like itrev, your definition should be tail-recursive: That is, in the recursive
case the right-hand side should be just an application of add to different arguments.

fun add :: “nat ⇒ nat ⇒ nat”

Next, you must prove that add is associative. Hint: The proof will require at least one
additional lemma. Also remember that some proofs by induction may require general-
ization with arbitrary.

theorem “add (add x y) z = add x (add y z)”

Finally, you must prove that add is commutative. This may require more lemmas in
addition to those used for the associativity proof.

theorem “add x y = add y x”

Homework 2.3 Completeness of Constant Folding

Submission until Wednesday, November 9, 12:00 (noon).

Note: This is a “bonus” exercise worth five additional points, making the maximum
possible score for all homework on this sheet 15 out of 10 points.

3

The AExp theory includes a function asimp const :: aexp ⇒ aexp that performs constant-
folding optimizations. It replaces occurrences of the pattern Plus (N x) (N y) with N
(x + y), resulting in an equivalent but smaller expression.

The asimp const function is supposed to perform as many constant-folding optimizations
as possible, yielding an expression that is somehow “optimal”.

Your first task is to specify exactly what “optimal” means. Define a predicate optimal
that evaluates to True if and only if no further constant-folding optimizations of the
form Plus (N x) (N y) 7→ N (x + y) are possible.

fun optimal :: “aexp ⇒ bool”

Test your definition of optimal on the following expressions:

value “optimal (Plus (N 1) (N 1))”
value “optimal (Plus (V x) (Plus (N 1) (N 1)))”
value “optimal (Plus (N 1) (Plus (N 1) (V x)))”

Which of these are optimal, and which are not?

Finally, prove that asimp const always yields an optimal expression:

theorem “optimal (asimp const a)”

Hint: Applying auto may leave you with subgoals containing case expressions like “case
x of ... ⇒ ...”. You can make progress by using case tac:

apply (case tac x)

Alternatively, you can use the split option to have auto perform case splitting on type
aexp automatically:

apply (auto split : aexp.split)

Beware that automatic case splitting may cause auto to loop in some circumstances,
depending on how your definitions are formulated.

4

