
Technische Universität München WS 2011/12
Institut für Informatik 11. 11. 2011

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 4

Exercise 4.1 Reflexive Transitive Closure

Theory Star (available on the course website) defines a binary relation star r, which is
the reflexive, transitive closure of the binary relation r. It is defined inductively with
the rules “star r x x” and “[[r x y ; star r y z]] =⇒ star r x z”.

We also could have defined star the other way round, i.e., by appending steps rather
than prepending steps:

inductive star ′ :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r where
“star ′ r x x” |
“ [[star ′ r x y ; r y z]] =⇒ star ′ r x z”

Prove the following lemma. Hint: You will need an additional lemma for the induction.

lemma “star r x y =⇒ star ′ r x y”

Exercise 4.2 Proving That Numbers Are Not Even

Recall the evenness predicate ev from the lecture:

inductive ev :: “nat ⇒ bool” where
ev0 : “ev 0” |
evSS : “ev n =⇒ ev (Suc (Suc n))”

Prove the converse of rule evSS using rule inversion. Hint: There are two ways to proceed.
First, you can write a structured Isar-style proof using the cases method:

lemma “ev (Suc (Suc n)) =⇒ ev n”
proof −

assume “ev (Suc (Suc n))” then show “ev n”
proof (cases)

...

qed
qed

1

Alternatively, you can write a more automated proof by using the inductive cases
command to generate elimination rules. These rules can then be used with “auto elim:”.
(If given the [elim] attribute, auto will use them by default.)

inductive cases evSS elim: “ev (Suc (Suc n))”

Next, prove that the natural number three (Suc (Suc (Suc 0))) is not even. Hint: You
may proceed either with a structured proof, or with an automatic one. An automatic
proof may require additional elimination rules from inductive cases.

lemma “¬ ev (Suc (Suc (Suc 0)))”

Exercise 4.3 Binary Trees with the Same Shape

Consider this datatype of binary trees:

datatype tree = Leaf int | Node tree tree

Define an inductive binary predicate sameshape :: tree ⇒ tree ⇒ bool, where sameshape
t1 t2 means that t1 and t2 have exactly the same overall size and shape. (The elements
in the corresponding leaves may be different.)

inductive sameshape :: “tree ⇒ tree ⇒ bool” where

Now prove that the sameshape relation is transitive.

theorem “ [[sameshape t1 t2; sameshape t2 t3]] =⇒ sameshape t1 t3”

Hint: For this proof, we recommend doing an induction over t1 and t2 using rule same-
shape.induct. You will also need some elimination rules from inductive cases. (Look
at the subgoals after induction to see which patterns to use.) Finally, note that “auto
elim:” applies rules tentatively with a limited search depth, and may not find a proof
even if you have all the rules you need. You can either try the variant “auto elim!:”,
which applies rules more eagerly, or try another method like blast or force.

Homework 4 IMP with Exceptions

Submission until Wednesday, November 23, 12:00 (noon). In this exercise, you shall
add exceptions to the IMP-language. Hint: A good approach is to start by copying the
definitions from the original theories, and then modify them. (Please include comments
that make it clear exactly which parts you have changed.)

First, extend the command datatype with try-catch blocks and a throw command. There
is only one exception type, i.e., the throw command has no further parameters.

datatype com
= SKIP
| Assign vname aexp (“ ::= ” [1000 , 61] 61)
| Semi com com (“ ;/ ” [60 , 61] 60)

2

| If bexp com com (“ (IF / THEN / ELSE)” [0 , 0 , 61] 61)
| While bexp com (“ (WHILE / DO)” [0 , 61] 61)
| TryCatch com com (“ (TRY / CATCH)” [0 ,61] 61)
| Throw (“THROW”)

Define a big-step semantics for this extended language. The proposition (c, s) ⇒ r
means that in initial state s, program c evaluates to the final result r. Due to the
presence of exceptions, the result r cannot simply have type state; instead we must use
this extended result type:

datatype result = Normal state | Exception state

inductive big step :: “com × state ⇒ result ⇒ bool” (infix “⇒” 55)
where

Next, define a predicate nothrow :: com ⇒ bool, where nothrow c means that c contains
no THROW statements that are not surrounded by an enclosing TRY. You may define
it using either fun or inductive, as you wish. (Note that your choice may have a big
effect on later proofs!)

Finally, show that a program that does not contain throw-statements outside try-catch
blocks will never return an exception state.

fun is normal :: “result ⇒ bool” where
“is normal (Normal s) ←→ True” |
“is normal (Exception s) ←→ False”

theorem “ [[nothrow c; (c, s) ⇒ r]] =⇒ is normal r”

Note 1 : When doing induction over an inductive predicate, the assumption containing
that predicate must appear first in the list of assumptions. If you need to re-order the
assumptions, you can either re-state the theorem, or else use one of these patterns:

theorem “ [[nothrow c; (c, s) ⇒ r]] =⇒ is normal r”
proof −

assume “ (c, s) ⇒ r” and “nothrow c” then show “is normal r”
apply (induction

theorem assumes 1 : “nothrow c” and 2 : “ (c, s) ⇒ r” shows “is normal r”
using 2 1 apply (induction

Note 2 : The default induction rule for big step only allows induction over two variables,
using an assumption of the form x ⇒ r. To get an induction rule that works with the
three-variable form (c, s) ⇒ r, use the following command:

lemmas big step induct = big step.induct [split format(complete)]

3

