
Technische Universität München WS 2011/12
Institut für Informatik 18. 11. 2011

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c

3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c; WHILE And b1 b2 DO c

4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c; WHILE b1 DO c

Hint: Use the following definition for Or :

definition Or :: “bexp ⇒ bexp ⇒ bexp” where
“Or b1 b2 = Not (And (Not b1) (Not b2))”

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We want to include a com-
mand c1 OR c2, which expresses the nondeterministic choice between two commands.
That is, when executing c1 OR c2 either c1 or c2 may be executed, and it is not specified
which one.

1. Modify the datatype com to include a new constructor OR.

2. Adapt the big step semantics to include rules for the new construct.

3. Prove that c1 OR c2 ∼ c2 OR c1.

4. Adapt the small step semantics, and the equivalence proof of big and small step
semantics.

Note: It is easiest if you take the existing theories and modify them.

1

Homework 5 Step-Index Semantics

Submission until Wednesday, November 30, 2011, 12:00 (noon).

Note: In order to save you some typing, we provide a template for this homework on the
lecture’s homepage.

In this homework, a denotational semantics for while-programs will be defined, i.e., a
function that takes a command and a state, and returns the result state.

In order to make this function well-defined even for non-terminating programs, it is
parameterized with an additional number, that indicates the maximum number of steps
to make. If the program has not yet terminated after this many steps, None is returned.

fun si :: “com ⇒ state ⇒ nat ⇒ state option” where
si None: “si s 0 = None” |
si SKIP : “si SKIP s (Suc i) = Some s” |
si ASS : “si (x ::=v) s (Suc i) = Some (s(x :=aval v s))” |
si SEMI : “si (c1 ;c2) s (Suc i) = (
case (si c1 s i) of None ⇒ None | Some s ′⇒ si c2 s ′ i)” |

si IF : “si (IF b THEN c1 ELSE c2) s (Suc i) =
(if bval b s then si c1 s i else si c2 s i)” |

si WHILE : “si (WHILE b DO c) s (Suc i) = (
if bval b s then

(case (si c s i) of
None ⇒ None |
Some s ′⇒ si (WHILE b DO c) s ′ i)

else Some s)”

Prove the equivalence of the big-step and the step-index semantics, i.e., show that

(∃ i . si c s i = Some s ′) ←→ big step (c,s) s ′

As this proof is more complicated than any proof in homeworks so far, we will give a bit
of guidance:

The two directions are proved separately. The proof of the first direction should be quite
straightforward, and is left to you.

lemma si imp bigstep: “si c s i = Some s ′ =⇒ big step (c,s) s ′”

For the other direction, it is useful to prove a monotonicity lemma first. If the step-index
semantics yields a result for index i, it yields the same result for any i ′≥i.
lemma si mono: “si c s i = Some s ′ =⇒ si c s (i+k) = Some s ′”
proof (induction c s i arbitrary : s ′

rule: si .induct [case names None SKIP ASS SEMI IF WHILE])
case (WHILE b c s i s ′) thus ?case

Only the WHILE-case requires some effort. Hint: Make a case distinction on the value of the
condition b.

qed (auto split : option.split option.split asm)

2

The main lemma is proved by induction over the big-step semantics. Remember the
adapted induction rule big step induct that nicely handles the pattern big step (c,s) s ′.

lemma bigstep imp si :
“big step (c,s) s ′ =⇒ ∃ i . si c s i = Some s ′”

proof (induct rule: big step induct)

We demonstrate the skip, while-true and sequential composition case here. The other cases are
left to you!

case (Skip s) have “si SKIP s 1 = Some s” by auto
thus ?case by blast

next
case (WhileTrue b s1 c s2 s3)
then obtain i1 i2 where “si c s1 i1 = Some s2”

and “si (WHILE b DO c) s2 i2 = Some s3” by auto
with si mono[of c s1 i1 s2 i2]
si mono[of “WHILE b DO c” s2 i2 s3 i1] have
“si c s1 (i1+i2) = Some s2”
and “si (WHILE b DO c) s2 (i2+i1) = Some s3”
by auto

hence “si (WHILE b DO c) s1 (Suc (i1+i2)) = Some s3”
using 〈bval b s1 〉 by (auto simp add : add ac)

thus ?case by blast
next

case (Semi c1 s1 s2 c2 s3)
then obtain i1 i2 where “si c1 s1 i1 = Some s2” and “si c2 s2 i2 = Some s3”

by auto
with si mono[of c1 s1 i1 s2 i2]
si mono[of c2 s2 i2 s3 i1]

have
“si c1 s1 (i1+i2) = Some s2” and “si c2 s2 (i2+i1) = Some s3”
by auto

hence “si (c1 ;c2) s1 (Suc (i1+i2)) = Some s3” by (auto simp add : add ac)
thus ?case by blast

Finally, prove the main theorem of the homework:

theorem si equiv bigstep: “ (∃ i . si c s i = Some s ′) ←→ big step (c,s) s ′”
end

3

