
Technische Universität München WS 2011/12
Institut für Informatik 25. 11. 2011

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 Small step equivalence

We define an equivalence relation ≈ on programs that uses the small-step semantics.
Unlike with ∼, we also demand that the programs take the same number of steps.

The following relation is the n-steps reduction relation:

inductive
n steps :: “com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool”
(“ →ˆ ” [60 ,1000 ,60 ]999 )

where
zero steps: “cs →ˆ0 cs” |
one step: “cs → cs ′ =⇒ cs ′→ˆn cs ′′ =⇒ cs →ˆ(Suc n) cs ′′”

Prove the following lemmas:

lemma small steps n: “cs →∗ cs ′ =⇒ (∃n. cs →ˆn cs ′)”
lemma n small steps: “cs →ˆn cs ′ =⇒ cs →∗ cs ′”

The equivalence relation is defined as follows:

definition
small step equiv :: “com ⇒ com ⇒ bool” (infix “≈” 50 ) where
“c ≈ c ′ == (∀ s t n. (c,s) →ˆn (SKIP , t) = (c ′, s) →ˆn (SKIP , t))”

Prove the following lemma:

lemma small eqv implies big eqv : “c ≈ c ′ =⇒ c ∼ c ′”

How about the reverse implication?

Exercise 6.2 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack,
similar to arithmetic expressions:

• The boolean value False is represented by the number 0, the boolean value True
is represented by any number not equal to 0.

1



• For every boolean operation exists a corresponding instruction which, similar to
arithmetic instructions, operates on values on top of the stack.

• The new instruction set introduces a conditional jump which pops the top-most
element from the stack and jumps over a given amount of instructions, if the
popped value corresponds to False, and otherwise goes to the next instruction.

Modify the theory Compiler by defining a suitable set of instructions, by adapting the
execution model and the compiler and by updating the correctness proof.

Homework 6 Micro-Step Semantics

Submission until Wednesday, December 7, 2011, 12:00 (noon).

In the lectures you have seen big-step and small-step semantics for the IMP language,
and how to prove that they are equivalent. In this homework you will formalize a new
micro-step semantics, and show that it is also equivalent to big-step.

The micro-step semantics relates pairs consisting of a list of commands together with
a state. A single micro-step consists of executing the command at the head of the list,
just like the small-step semantics—unless that command is a sequence (c1; c2). In that
case a micro-step consists of putting c1 and c2 back onto the list separately, without
executing either one.

inductive micro step :: “com list × state ⇒ com list × state ⇒ bool” where
ms skip: “micro step (SKIP # l , s) (l , s)” |
ms assign: “micro step ((x ::= a) # l , s) (SKIP # l , s(x := aval a s))” |
ms semi : “micro step ((c1; c2) # l , s) (c1 # c2 # l , s)” |
ms ift : “bval b s =⇒ micro step ((IF b THEN c1 ELSE c2) # l , s) (c1 # l , s)” |
ms iff : “¬ bval b s =⇒ micro step ((IF b THEN c1 ELSE c2) # l , s) (c2 # l , s)” |
ms while: “micro step ((WHILE b DO c) # l , s)

((IF b THEN c; WHILE b DO c ELSE SKIP) # l , s)”

We define micro steps as an abbreviation for the reflexive, transitive closure of mi-
cro step. (Recall that star is defined in Star .thy.)

abbreviation “micro steps ≡ star micro step”

Because these are relations on pairs, we will need to generate new induction rules for
them using the split format attribute.

lemmas micro step induct =
micro step.induct [split format(complete)]

lemmas micro steps induct =
star .induct [where r=micro step, split format(complete)]

Your assignment is to prove that the micro-step semantics is equivalent to the big-step
semantics:

theorem “micro steps ([c], s) ([], s ′) ←→ (c, s) ⇒ s ′”

2



You should prove implications in each direction separately. The following lemma states
the right-to-left direction:

lemma big step imp micro steps: “ (c, s) ⇒ s ′ =⇒ micro steps ([c], s) ([], s ′)”

Hint: Proving big step imp micro steps may require additional lemmas; alternatively,
you may find that it is easier to prove a generalization of this lemma instead. Also, note
that you will probably need to use the rule star trans (from Star .thy) in your proof.

To help with the left-to-right direction, we recommend defining a function seq that
combines a list of commands into a single command. Then you can prove a lemma like
micro steps imp big step seq below:

fun seq :: “com list ⇒ com” where
“seq [] = SKIP” |
“seq (c # l) = (c; seq l)”

lemma micro steps imp big step seq :
“micro steps (cs, s) (cs ′, s ′) =⇒ ∀ t . (seq cs, s) ⇒ t ←→ (seq cs ′, s ′) ⇒ t”

Together with big step imp micro steps, you should then be able to prove the final the-
orem:

theorem “micro steps ([c], s) ([], s ′) ←→ (c, s) ⇒ s ′”

3


