Technische Universitat Miinchen WS 2011/12
Institut fiir Informatik 25. 11. 2011
Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 Small step equivalence

We define an equivalence relation ~ on programs that uses the small-step semantics.
Unlike with ~, we also demand that the programs take the same number of steps.

The following relation is the n-steps reduction relation:

inductive
n_steps :: “com * state = nat = com * state = bool”
(“ —="__"[60,1000,60]999)

where

zero_steps: “cs — "0 cs” |

one_step: “cs = ¢s' = ¢s’ = "n cs’ = ¢s = "(Suc n) s’’’

Prove the following lemmas:

lemma small_steps_n: “cs —* cs’ = (In. ¢cs = "n cs’)”
lemma n_small_steps: “cs — "n cs’ = cs —* cs'”

The equivalence relation is defined as follows:

definition

small_step_equiv = “com = com = bool” (infix “~” 50) where

‘e~ c'==(stn. (¢,s) = n (SKIP, t) = (c’,s8) = "n (SKIP, t))”
Prove the following lemma:

lemma small_equ_implies_big_equ: “c =~ ¢’ = ¢ ~ ¢'”

How about the reverse implication?

Exercise 6.2 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack,
similar to arithmetic expressions:
e The boolean value Fulse is represented by the number 0, the boolean value True
is represented by any number not equal to 0.

e For every boolean operation exists a corresponding instruction which, similar to
arithmetic instructions, operates on values on top of the stack.

e The new instruction set introduces a conditional jump which pops the top-most
element from the stack and jumps over a given amount of instructions, if the
popped value corresponds to False, and otherwise goes to the next instruction.

Modify the theory Compiler by defining a suitable set of instructions, by adapting the
execution model and the compiler and by updating the correctness proof.

Homework 6 Micro-Step Semantics

Submission until Wednesday, December 7, 2011, 12:00 (noon,).

In the lectures you have seen big-step and small-step semantics for the IMP language,
and how to prove that they are equivalent. In this homework you will formalize a new
micro-step semantics, and show that it is also equivalent to big-step.

The micro-step semantics relates pairs consisting of a list of commands together with
a state. A single micro-step consists of executing the command at the head of the list,
just like the small-step semantics—unless that command is a sequence (c¢1; ¢2). In that
case a micro-step consists of putting ¢; and co back onto the list separately, without
executing either one.

inductive micro_step :: “com list x state = com list X state = bool” where
ms_skip: “micro_step (SKIP # 1, s) (I, s)” |
ms_assign: “micro_step ((z == a) # 1, s) (SKIP # 1, s(z := aval a s))” |
ms_semi: “micro_step ((c1; c2) # 1, 8) (c1 # ca # 1, 8)7 |
ms_ift: “bval b s = micro_step ((IF b THEN ¢y ELSE co) # 1, s) (c1 # 1, 8)” |
ms_iff: “= bval b s = micro_step ((IF b THEN ¢y ELSE co) # 1, s) (ca # 1, 5)” |
ms-while: “micro_step (WHILE b DO c¢) # 1, s)

((IF b THEN ¢; WHILE b DO ¢ ELSE SKIP) # 1, s)”

We define micro_steps as an abbreviation for the reflexive, transitive closure of mi-
cro_step. (Recall that star is defined in Star.thy.)

abbreviation “micro_steps = star micro_step”

Because these are relations on pairs, we will need to generate new induction rules for
them using the split_format attribute.

lemmas micro_step_induct =
micro_step.induct[split_format(complete)]

lemmas micro_steps_induct =
star.induct [where r=micro_step, split_format(complete)]

Your assignment is to prove that the micro-step semantics is equivalent to the big-step
semantics:

theorem “micro_steps ([c], s) ([], s) «— (¢, s) = s"”

You should prove implications in each direction separately. The following lemma states
the right-to-left direction:

lemma big_step_imp_micro_steps: “(c, s) = s’ = micro_steps ([c], s) ([}, s')”

Hint: Proving big_step_imp_micro_steps may require additional lemmas; alternatively,
you may find that it is easier to prove a generalization of this lemma instead. Also, note
that you will probably need to use the rule star_trans (from Star.thy) in your proof.

To help with the left-to-right direction, we recommend defining a function seq that
combines a list of commands into a single command. Then you can prove a lemma like
micro_steps_imp_big_step_seq below:

fun seq :: “com list = com” where
“seq [| = SKIP” |
“seq (c # 1) = (c; seq 1)”

lemma micro_steps_imp_big_step_seq:
“micro_steps (cs, s) (cs’, s') = Vt. (seq cs, s) = t «— (seq ¢cs/, s') = ¢’

Together with big_step_imp_micro_steps, you should then be able to prove the final the-
orem:

1»

theorem “micro_steps ([c], s) ([], s) «— (¢, s) = s

