Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 Small step equivalence

We define an equivalence relation \approx on programs that uses the small-step semantics. Unlike with \sim , we also demand that the programs take the same number of steps. The following relation is the n-steps reduction relation:

inductive

 $\begin{array}{l}n_steps :: ``com * state \Rightarrow nat \Rightarrow com * state \Rightarrow bool"\\(``_ \rightarrow `__" [60,1000,60]999)\\ \textbf{where}\\zero_steps: ``cs \rightarrow `0 cs" \mid\\one_step: ``cs \rightarrow cs' \Rightarrow cs' \rightarrow `n cs'' \Rightarrow cs \rightarrow `(Suc n) cs''"\end{array}$

Prove the following lemmas:

lemma small_steps_n: "cs \rightarrow * cs' \Longrightarrow ($\exists n. cs \rightarrow \hat{n} cs'$)" **lemma** n_small_steps: "cs $\rightarrow \hat{n} cs' \Longrightarrow cs \rightarrow \hat{n} cs'$ "

The equivalence relation is defined as follows:

definition $small_step_equiv :: "com \Rightarrow com \Rightarrow bool" (infix "≈" 50) where$ " $c \approx c' == (\forall s \ t \ n. \ (c,s) \rightarrow \hat{n} \ (SKIP, \ t) = (c', \ s) \rightarrow \hat{n} \ (SKIP, \ t))$ "

Prove the following lemma:

lemma small_eqv_implies_big_eqv: " $c \approx c' \Longrightarrow c \sim c'$ "

How about the reverse implication?

Exercise 6.2 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack, similar to arithmetic expressions:

• The boolean value *False* is represented by the number 0, the boolean value *True* is represented by any number not equal to 0.

- For every boolean operation exists a corresponding instruction which, similar to arithmetic instructions, operates on values on top of the stack.
- The new instruction set introduces a conditional jump which pops the top-most element from the stack and jumps over a given amount of instructions, if the popped value corresponds to *False*, and otherwise goes to the next instruction.

Modify the theory *Compiler* by defining a suitable set of instructions, by adapting the execution model and the compiler and by updating the correctness proof.

Homework 6 Micro-Step Semantics

Submission until Wednesday, December 7, 2011, 12:00 (noon).

In the lectures you have seen big-step and small-step semantics for the IMP language, and how to prove that they are equivalent. In this homework you will formalize a new *micro-step* semantics, and show that it is also equivalent to big-step.

The micro-step semantics relates pairs consisting of a list of commands together with a state. A single micro-step consists of executing the command at the head of the list, just like the small-step semantics—unless that command is a sequence $(c_1; c_2)$. In that case a micro-step consists of putting c_1 and c_2 back onto the list separately, without executing either one.

inductive micro_step :: "com list × state \Rightarrow com list × state \Rightarrow bool" where ms_skip: "micro_step (SKIP # l, s) (l, s)" | ms_assign: "micro_step ((x ::= a) # l, s) (SKIP # l, s(x := aval a s))" | ms_semi: "micro_step ((c_1; c_2) # l, s) (c_1 # c_2 # l, s)" | ms_ift: "bval b s \Rightarrow micro_step ((IF b THEN c_1 ELSE c_2) # l, s) (c_1 # l, s)" | ms_iff: "¬ bval b s \Rightarrow micro_step ((IF b THEN c_1 ELSE c_2) # l, s) (c_2 # l, s)" | ms_while: "micro_step ((WHILE b DO c) # l, s) ((IF b THEN c; WHILE b DO c ELSE SKIP) # l, s)"

We define *micro_steps* as an abbreviation for the reflexive, transitive closure of *micro_step*. (Recall that *star* is defined in *Star.thy*.)

abbreviation "micro_steps \equiv star micro_step"

Because these are relations on pairs, we will need to generate new induction rules for them using the *split_format* attribute.

lemmas micro_step_induct =
 micro_step.induct[split_format(complete)]
lemmas micro_steps_induct =
 star.induct [where r=micro_step, split_format(complete)]

Your assignment is to prove that the micro-step semantics is equivalent to the big-step semantics:

theorem "micro_steps ([c], s) ([], s') \longleftrightarrow (c, s) \Rightarrow s'"

You should prove implications in each direction separately. The following lemma states the right-to-left direction:

lemma $big_step_imp_micro_steps: "(c, s) \Rightarrow s' \implies micro_steps ([c], s) ([], s')"$

Hint: Proving *big_step_imp_micro_steps* may require additional lemmas; alternatively, you may find that it is easier to prove a generalization of this lemma instead. Also, note that you will probably need to use the rule *star_trans* (from *Star.thy*) in your proof.

To help with the left-to-right direction, we recommend defining a function *seq* that combines a list of commands into a single command. Then you can prove a lemma like *micro_steps_imp_big_step_seq* below:

fun seq :: "com list \Rightarrow com" where "seq [] = SKIP" | "seq (c # l) = (c; seq l)"

lemma *micro_steps_imp_big_step_seq*: "*micro_steps* (*cs*, *s*) (*cs'*, *s'*) $\Longrightarrow \forall t$. (*seq cs*, *s*) $\Rightarrow t \longleftrightarrow$ (*seq cs'*, *s'*) $\Rightarrow t$ "

Together with *big_step_imp_micro_steps*, you should then be able to prove the final theorem:

theorem "micro_steps ([c], s) ([], s') \longleftrightarrow (c, s) \Rightarrow s'"