
Technische Universität München WS 2011/12
Institut für Informatik 2. 12. 2011

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

1. Modify, in the theory Types, the inductive definitions of taval and tbval such that
implicit coercions are applied where necessary.

2. Extend the datatype com by a loop construct DO a TIMES c which executes
the command c exactly a times, where a is an arbitrary arithmetic expression of
integer type.

3. Adapt all proofs in the theory Types accordingly.

Hint: Isabelle already provides the coercion functions nat, int, and real.

Homework 7 Register Machine for Arithmetic Expressions

Submission until Wednesday, December 14, 2011, 12:00 (noon).

Compiler .thy defines a function acomp that compiles an arithmetic expression, resulting
in a program that runs on a stack machine. In this homework, you will define and verify
a similar compiler for a different machine architecture: the register machine.

The register machine does not have a stack, but instead uses a set of registers to store
values. Registers are indexed by type reg, which is a synonym for type nat. (Effectively,
the machine has infinitely many registers.) The contents of the entire register file can
be modeled as a function from registers to values (type mstate).

type synonym reg = nat
type synonym mstate = “reg ⇒ val”

The instruction set for the register machine comprises three instructions:

• LOAD r x stores the value of variable x in register r.

• LOADI r v stores the immediate value v in register r.

• ADD rdest r1 r2 reads values from registers r1 and r2, and stores their sum in
register rdest.

1

datatype rinst = LOAD reg vname | LOADI reg val | ADD reg reg reg

The assignment consists of three parts. In each part you have much flexibility in choosing
how to formalize everything.

1. Formalize the operational semantics of the register machine. The final machine
state (type mstate) depends on the program (type rinst list), the state of the
variables (type state), and the initial machine state. You may define it as a function
or as an inductive relation, whichever you prefer.

2. Define a compiler for arithmetic expressions. This should take an expression of
type aexp as input, and give back a program of type rinst list. Your compiler
must ensure that when a value is saved in a register, it does not get overwritten
before it needs to be used again. Therefore a simple function of type aexp ⇒
rinst list probably will not work; you may need to add extra input and/or output
parameters to keep track of which registers to use and which not to use. (Don’t
worry about using registers efficiently—remember that you have an infinite supply
of them, so use as many as you want.)

3. Formulate and prove a correctness property for your compiler. For any arithmetic
expression a :: aexp and variable state s :: state, the compiled program for a should
result in a final machine state where some appropriate register contains a value
equal to aval a s. Of course, the formulation of this theorem must depend on the
design of your compiler function.

2

