
Technische Universität München WS 2011/12
Institut für Informatik 9. 12. 2011

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 8

Exercise 8.1 Definite Assignment Analysis

In the lecture, you have seen a definite assignment analysis that was based on the large-
step semantics. Definite assignment analysis can also be based on a small-step semantics.
Furthermore, the ternary predicate D from the lecture can be split into two parts: a
function AA :: com ⇒ name set (“assigned after”) which collects the names of all
variables assigned by a command and a binary predicate D :: name set ⇒ com ⇒ bool
which checks that a command accesses only previously assigned variables. Conceptually,
the ternary predicate from the lecture (call it D lec) and the two-step approach should
relate by the equivalence D V c ←→ D lec V c (V ∪ AA c)

1. Download the theory ex08 template and study the already defined small-step
semantics for definite analysis.

2. Define the function AA which computes the set of variables assigned after execution
of a command. Furthermore, define the predicate D which checks if a command
accesses only assigned variables, assuming the variables in the argument set are
already assigned.

3. Prove progress and preservation of D with respect to the small-step semantics,
and conclude soundness of D. You may use (and then need to prove) the lemmas
D incr and D mono.

Homework 8 Read Variables

Submission until Wednesday, December 21, 2011, 12:00 (noon).

Instantiates the vars typeclass for commands, such that vars c is the set of variables
read by the command.

Then show, that an execution does not depend on variables not read by the command,
w.r.t. the small-step semantics. I.e., show the following lemma:

lemma “ [[(c,s) →∗ (c ′,s ′); s = t on X ; vars c ⊆ X ]]
=⇒ ∃ t ′. (c,t) →∗ (c ′,t ′) ∧ s ′ = t ′ on X”

1



Hint: You may want to show the lemma for a single small-step first, i.e.,

lemma eq step: “ [[(c,s) → (c ′,s ′); s = t on X ; vars c ⊆ X ]]
=⇒ ∃ t ′. (c,t) → (c ′,t ′) ∧ s ′ = t ′ on X”

2


