
Technische Universität München WS 2011/12
Institut für Informatik 16. 12. 2011

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 9

Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables a and b in
variable c.

definition MAX :: com where

For the next task, you will need the following lemmas. Hint: Sledgehammering may be
a good idea.

lemma [simp]: “ (a::int)<b =⇒ max a b = b”

lemma [simp]: “¬(a::int)<b =⇒ max a b = a”

Show that MAX satisfies the following Hoare-triple:

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Now define a program MUL that returns the product of x and y in variable z. You may
assume that y is not negative.

definition MUL :: com where

Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints You may want to use the lemma algebra simps, that contains some useful lemmas
like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs
is also backwards, i.e., on a semicolon S 1; S 2, you first continue the proof for S 2, thus
instantiating the intermediate assertion, and then do the proof for S 1. However, the first
premise of the Semi -rule is about S 1. Hence, you may want to use the rotated -attribute,
that rotates the premises of a lemma:

lemmas Semi bwd = Semi [rotated]

1

Note that our specifications still have a problem, as programs are allowed to overwrite
arbitrary variables.

For example, regard the following (wrong) implementation of MAX :

definition “MAX wrong ≡ ′′a ′′::=N 0 ; ′′b ′′::=N 0 ; ′′c ′′::=N 0”

Prove that MAX wrong also satisfies the specification for MAX :

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
MAX
{λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Homework 9 Available Expressions

Submission until Wednesday, 11 January 2012, 12:00 (noon).

Regard the following function AA, which computes the available assignments of a com-
mand. An available assignment is a pair of a variable and an expression such that the
variable holds the value of the expression in the current state. The function AA c A
computes the available assignments after executing command c, assuming that A is the
set of available assignments for the initial state.

Note that available assignments can be used for program optimization, by avoiding
recomputation of expressions whose value is already available in some variable.

fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where
“AA SKIP A = A” |
“AA (x ::= a) A = (if x ∈ vars a then {} else {(x , a)})
∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}” |

“AA (c1; c2) A = (AA c2 ◦ AA c1) A” |
“AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A” |
“AA (WHILE b DO c) A = A ∩ AA c A”

Show that available assignment analysis is a gen/kill analysis, i.e., define two functions
gen and kill such that

AA c A = (A ∪ gen c) − kill c.

Note that the above characterization differs from the one that you have seen on the
slides, which is (A − kill c) ∪ gen c. However, the same properties (monotonicity, etc.)
can be derived using either version.

2

fun gen :: “com ⇒ (vname × aexp) set”
and “kill” :: “com ⇒ (vname × aexp) set”

lemma AA gen kill : “AA c A = (A ∪ gen c) − kill c”

Hint: Defining gen and kill functions for available assignments will require mutual recur-
sion, i.e., gen must make recursive calls to kill, and kill must also make recursive calls
to gen. The and-syntax in the function declaration allows you to define both functions
simultaneously with mutual recursion. After the where keyword, list all the equations
for both functions, separated by | as usual.

Now show that the analysis is sound:

theorem AA sound :
“ (c, s) ⇒ s ′ =⇒ ∀ (x , a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through.

3

