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Semantics of Programming Languages
Exercise Sheet 12

The following exercises are typical exam exercises. You are supposed to solve them on
a sheet of paper, without using Isabelle/HOL.

Exercise 12.1 Inductive Predicates

Consider the following inductive predicate, which characterizes odd natural numbers.

inductive odd :: “nat ⇒ bool” where
Suc 0 : “odd (Suc 0 )” |
Suc Suc: “odd n =⇒ odd (Suc (Suc n))”

Using the induction principle for the predicate odd, it can be proven that three times
any odd number is also odd:

lemma “odd n =⇒ odd (n + n + n)”
proof (induct rule: odd .induct)

First, write down precisely what subgoals remain after performing induction. How many
cases are there? Which assumptions are available, and what conclusion must be proved
in each case? Next, describe how each case can be proved. Which simplification rules or
introduction rules are used to prove each case?

Exercise 12.2 Collecting Semantics

Recall the datatype of annotated commands (type ′a acom) and the collecting semantics
(function step :: state set ⇒ state set acom ⇒ state set acom) from the lecture. We
reproduce the definition of step here for easy reference. (Recall that post c simply returns
the right-most annotation from command c.)

step S (SKIP { }) = SKIP {S}
step S (x ::=e { }) = x ::=e {{s ′. ∃ s∈S . s ′=s(x :=aval e s)}}
step S (c1; c2) = step S c1; step (post c1) c2
step S (IF b THEN c1 ELSE c2 { }) =

IF b THEN step {s∈S . bval b s} c1
ELSE step {s∈S . ¬ bval b s} c2 {post c1 ∪ post c2}

step S ({I } WHILE b DO c { }) =
{S ∪ post c} WHILE b DO (step {s∈I . bval b s} c) {{s∈I . ¬ bval b s}}
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In this exercise you must evaluate the collecting semantics on the example program
below by repeatedly applying the step function.

c = (IF x < 0 THEN
{A1} WHILE 0 < y DO (

y := y + x {A2}
) {A3}
ELSE SKIP {A4}

) {A5}
Calculate column n+1 in the table below by evaluating step S c with the value of S and
the annotations for c taken from column n. For conciseness, we use “〈i , j 〉” as notation
for the state < ′′x ′′:=i , ′′y ′′:=j>. We have filled in columns 0 and 1 to get you started;
now compute and fill in the rest of the table.

0 1 2 3 4 5 6 7

S {〈−2 ,3 〉,〈1 ,2 〉} ∅ ∅ ∅ ∅ ∅ ∅ ∅
A1 ∅ {〈−2 ,3 〉}
A2 ∅ ∅
A3 ∅ ∅
A4 ∅ {〈1 ,2 〉}
A5 ∅ ∅

Exercise 12.3 Substitution

Reconsider the datatype for arithmetic expressions.

datatype aexp = N int | V vname | Plus aexp aexp

Define a function subst ::aexp ⇒ vname ⇒ aexp ⇒ aexp, such that subst a v a ′ yields
the expression a where every occurence of variable v is replaced by the expression a ′.

Moreover, define a function occurs::aexp ⇒ vname ⇒ bool such that occurs a v is true
if and only if the variable v occurs in the expression a.

Prove the following lemma:

¬ occurs a v =⇒ subst a v a ′ = a

Is the following lemma also true? Proof or counterexample!

¬occurs (subst a v a ′) v

Homework 12 Complete Lattices and the Kleene Fixed Point Theorem

Submission until Wednesday, 1 February 2012, 12:00 (noon). (To be done with Is-
abelle/HOL again)
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Have a look at the complete lattice typeclass of Isabelle. (The class definition can be
found in src/HOL/Complete Lattices.thy, and the definitions of the lattice and semilat-
tice super-classes can be found in src/HOL/Lattices.thy in the distribution.) It provides
the standard characterization of complete lattices in Isabelle, where the carrier set of
the lattice is assumed to be all elements of the type.

As mentioned in the lecture, the operations ≤ and Sup already uniquely determine the
other operations (<,top, bot, Inf, inf, sup).

Provide and prove suitable characterizations for bot, top, and Inf :

lemma “ (bot :: ′a::complete lattice) = XXX” oops
lemma “ (top:: ′a::complete lattice) = XXX” oops
lemma “Inf (X :: ′a::complete lattice set) = XXX” oops

Note: The only lattice operations that XXX may contain are ≤ and Sup.

Hint: The relevant lemmas are:

thm order refl order antisym order trans Sup least Sup upper
thm bot least bot unique top greatest top unique Inf lower Inf greatest

Next, you shall prove the Kleene fixed point theorem. We first introduce some auxiliary
definitions:

A chain is a set such that any two elements are comparable. For the purposes of the
Kleene fixed-point theorem, it is sufficient to consider only countable chains. It is easiest
to formalize these as ascending sequences. (We can obtain the corresponding set using
the function range :: ( ′a ⇒ ′b) ⇒ ′b set.)

definition chain :: “ (nat ⇒ ′a::complete lattice) ⇒ bool”
where “chain C ←→ (∀n. C n ≤ C (Suc n))”

A function is continuous, if it commutes with least upper bounds of chains.

definition continuous :: “ ( ′a::complete lattice ⇒ ′b::complete lattice) ⇒ bool”
where “continuous f ←→ (∀C . chain C −→ f (Sup (range C )) = Sup (f ‘ range C ))”

The following lemma may be handy:

lemma continuousD : “ [[continuous f ; chain C ]] =⇒ f (Sup (range C )) = Sup (f ‘ range C )”
unfolding continuous def by auto

As first exercise, show that any continuous function is monotonic:

lemma cont imp mono:
fixes f :: “ ′a::complete lattice ⇒ ′b::complete lattice”
assumes “continuous f”
shows “mono f”

Hint: The relevant lemmas are

thm mono def monoI monoD
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Finally show the Kleene fixed point theorem. Note that this theorem is important, as it
provides a way to compute least fixed points by iteration.

theorem kleene lfp:
fixes f :: “ ′a::complete lattice ⇒ ′a”
assumes CONT : “continuous f”
shows “lfp f = Sup (range (λi . (fˆˆi) bot))”

proof −

We propose a proof structure here, however, you may deviate from this and use your own proof
structure:

let ?C = “λi . (fˆˆi) bot”
note MONO=cont imp mono[OF CONT ]

have CHAIN : “chain ?C”
show ?thesis
proof (rule antisym)

show “Sup (range ?C ) ≤ lfp f”
next

show “lfp f ≤ Sup (range ?C )”
qed

qed

Hint: Some relevant lemmas are

thm lfp unfold lfp lowerbound Sup subset mono range eqI
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