
Technische Universität München WS 2011/12
Institut für Informatik 27. 01. 2012

Prof. Tobias Nipkow, Ph.D.
Brian Huffman, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 13

The following exercises are typical exam exercises. You are supposed to solve them on
a sheet of paper, without using Isabelle/HOL.

Exercise 13.1 Verification Condition Generation

Regard the following While-program S:

a ::= x;

WHILE 1 < a DO

a := a - 2

Your task is to show that:

|= {x ≥ 0} S {a = 0 =⇒ even x}

Find an invariant for the loop. Let Sannot be the annotated program, and Q := {a =
0 =⇒ even x} be the postcondition. Which proof obligations result when using the
verification condition generator? What does vc Sannot Q and pre Sannot Q s look like?

Exercise 13.2 Parity analysis

Now regard the following While-program:

r := 11;

a := 11 + 11;

WHILE 1 < a DO

r := r + 1

a := a - 2;

r := a + 1

Add annotations for parity analysis to this program, and iterate the step′-function until
a fixed point is reached. Document the results of each iteration in a table. Hint: Unlike
sheet 12, you need to push the top-value of the lattice into the step function on each
iteration!

1



Exercise 13.3 Abstract Interpretation For Conditionals

(To be done with Isabelle)

Regard the locale Val abs. Define, analogous to plus ′, a function less ′ :: ′av ⇒ ′av ⇒
bool option that approximates less expressions: Some b means, the result is definitely b,
and None means unknown. Insert also an appropriate assumption gamma less ′ to the
locale.

Then define a function bval ′ :: bexp ⇒ ′av st ⇒ bool option in the locale Abs Int Fun
(analogous to aval’), and show a lemma bval sound (analogous to aval ′ sound).

Note: You are not required to modify the step ′ function.

Homework 13 Abstract Interpretation: Sign Analysis

Submission until Wednesday, 8 February 2012, 12:00 (noon).

In this homework assignment, you must use the abstract interpretation framework (the-
ory file Abs Int0 .thy) to create a sign analysis: For each program variable, this will
calculate which signs (positive, negative, or zero) it could possibly have. (Refer to
Abs Int0 parity .thy to see a similar analysis for evenness/oddness. You may want to use
that theory as a template for this assignment.)

First, define a type sign to formalize the 8-element complete lattice shown here. The
elements neg, zero, and pos indicate variables that are definitely known to be negative,
zero, or positive, respectively. The other elements represent combinations of these.

none

neg zero pos

non-pos non-zero non-neg

any

One approach is to formalize sign as an 8-constructor datatype. But note that other
representations are also possible!

Next, instantiate the preord and SL top type classes: Define the ordering (op v), join
operator (op t), and top element (>), and prove that they satisfy the class axioms.

instantiation sign :: preord
begin

fun le sign :: “sign ⇒ sign ⇒ bool” where
instance

end

2



instantiation sign :: SL top
begin

fun join sign :: “sign ⇒ sign ⇒ sign” where
definition Top sign :: “sign” where
instance

end

In order to instantiate the Val abs and Abs Int locales, you must first define three func-
tions that describe the meaning of the sign type.

The function γ sign yields the set of possible integer values that correspond to each sign.
For example, when applied to the value representing non-neg, it should return a set
equal to {i . 0 ≤ i}.
fun γ sign :: “sign ⇒ val set” where

The function num sign returns the most specific sign value that includes the given
integer: neg, zero, or pos, as appropriate.

fun num sign :: “val ⇒ sign” where

The plus sign function performs addition on sign values. It should always return the
most specific element possible. For example, non-neg + pos = pos, and neg + pos =
any.

fun plus sign :: “sign ⇒ sign ⇒ sign” where

Now instantiate the Val abs and Abs Int locales. The Val abs locale requires you to
supply some proofs, while Abs Int does not.

interpretation Val abs
where γ = γ sign and num ′ = num sign and plus ′ = plus sign

interpretation Abs Int
where γ = γ sign and num ′ = num sign and plus ′ = plus sign
defines aval sign is aval ′ and step sign is step ′ and AI sign is AI

proof qed

Define and test the following example program as shown here. What does the analysis
tell you about the values of x and y?

definition “test1 sign =
′′x ′′ ::= N 0 ;
′′y ′′ ::= Plus (V ′′x ′′) (N 1 );
WHILE Less (V ′′x ′′) (N 10 ) DO (

′′x ′′ ::= Plus (V ′′x ′′) (N 2 );
′′y ′′ ::= Plus (V ′′x ′′) (V ′′y ′′))”

value “show acom opt (AI sign test1 sign)”

Finally, you must define a measure function for type sign, which can be used to prove
that the analysis always terminates. Define a function m sign and show that it satisfies
the following two properties.

3



fun m sign :: “sign ⇒ nat” where
lemma m sign gt : “ [[x v y ; ¬ y v x ]] =⇒ m sign x > m sign y”
lemma m sign eq : “ [[x v y ; y v x ]] =⇒ m sign x = m sign y”

4


