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Exercise 14.1 Abstract Boolean Expressions

Finnish exercise 13.3!

Exercise 14.2 Galois Connections

Given an abstraction function α:: ′c ⇒ ′a and a concretization function γ:: ′a ⇒ ′c, they
form a Galois-Connection, iff

α c ≤ a ←→ c ≤ α a

Intuitively, this means that abstraction and concretization can be used interchangeably.

Your task is to prove some properties of Galois-Connections. Warning: Not all properties
we propose here are actually true! Give a counterexample for those cases.

locale galois connection =
fixes α::“ ′a::complete lattice ⇒ ′b::complete lattice” and γ
assumes galois: “c ≤ γ(a) ←→ α(c) ≤ a”

begin

Intuition: Concretization followed by abstraction yields a more precise value.

lemma αγ defl : “α(γ(x )) ≤ x”

Intuition: Abstraction followed by concretization yields a more precise value.

lemma γα defl : “ γ(α(x )) ≤ x”

Intuition: Abstraction followed by concretization yields a less precise value.

lemma γα infl : “x ≤ γ(α(x ))”

Intuition: Concretization followed by abstraction yields a less precise value.

lemma αγ infl : “x ≤ α(γ(x ))”
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lemma α mono: “mono α”

lemma γ mono: “mono γ”

Intuition: Concretization of the greatest lower bound is the same as the greatest lower
bound of concretizations.

lemma dist γ[simp]:
“ γ (inf a b) = inf (γ a) (γ b)”

Intuition: Abstraction of the least upper bound (join) is the same as the least upper
bound of abstractions.

lemma dist α[simp]:
“α (sup a b) = sup (α a) (α b)”

end

Intuition: γ is already uniquely determined by α

lemma γ determ:
assumes “galois connection α γ” and “galois connection α γ ′”
shows “ γ=γ ′”

proof −
interpret a: galois connection α γ + b: galois connection α γ ′ by fact+

show ?thesis
qed

Intuition: α is already uniquely determined by γ

lemma α determ:
assumes “galois connection α γ” and “galois connection α ′ γ”
shows “α=α ′”

proof −
interpret a: galois connection α γ + b: galois connection α ′ γ by fact+

show ?thesis
qed

Recipe for counterexamples (by example):

Assume we would have asked you to show

lemma (in galois connection) α antimono: “y≤x =⇒ α x ≤ α y” oops

First find an appropriate Galois-Connection. In our case, we take the trivial one (id ,id)
over the complete lattice of sets of booleans. Hint: The complete lattice of sets of
booleans bool set and the lattice of sets of unit-type unit set are good candidates for
finding counterexamples!

definition “αc ≡ id ::(bool set ⇒ bool set)”
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definition “ γc ≡ id ::(bool set ⇒ bool set)”
interpretation c!: galois connection αc γc

apply (unfold locales)
unfolding αc def γc def by auto

Then prove a lemma that provides a counterexample

lemma
defines “x≡UNIV” and “y≡{}”
shows “¬ (y≤x −→ αc x ≤ αc y)”
unfolding αc def γc def x def y def by auto
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