Semantics of Programming Languages

Exercise Sheet 14

Exercise 14.1 Abstract Boolean Expressions

Finnish exercise 13.3!

Exercise 14.2 Galois Connections

Given an abstraction function $\alpha::'c \Rightarrow 'a$ and a concretization function $\gamma::'a \Rightarrow 'c$, they form a Galois-Connection, iff

 $\alpha \ c \leq a \longleftrightarrow c \leq \alpha \ a$

Intuitively, this means that abstraction and concretization can be used interchangeably. Your task is to prove some properties of Galois-Connections. Warning: Not all properties we propose here are actually true! Give a counterexample for those cases.

locale galois_connection = fixes α :: "'a::complete_lattice \Rightarrow 'b::complete_lattice" and γ assumes galois: " $c \leq \gamma(a) \leftrightarrow \alpha(c) \leq a$ " begin

Intuition: Concretization followed by abstraction yields a more precise value.

lemma $\alpha \gamma_{-}defl: \ ``\alpha(\gamma(x)) \leq x"$

Intuition: Abstraction followed by concretization yields a more precise value. lemma $\gamma \alpha_{-} defl$: " $\gamma(\alpha(x)) \leq x$ "

Intuition: Abstraction followed by concretization yields a less precise value. lemma $\gamma \alpha_{-infl}$: " $x \leq \gamma(\alpha(x))$ "

Intuition: Concretization followed by abstraction yields a less precise value. lemma $\alpha \gamma_{-infl}$: " $x \leq \alpha(\gamma(x))$ " lemma α _mono: "mono α " lemma γ _mono: "mono γ "

Intuition: Concretization of the greatest lower bound is the same as the greatest lower bound of concretizations.

lemma $dist_{\gamma}[simp]$: " γ (inf a b) = inf (γ a) (γ b)"

Intuition: Abstraction of the least upper bound (join) is the same as the least upper bound of abstractions.

lemma $dist_{\alpha}[simp]$: " α (sup a b) = sup (α a) (α b)"

 \mathbf{end}

Intuition: γ is already uniquely determined by α

```
lemma \gamma_{-} determ:

assumes "galois_connection \alpha \gamma" and "galois_connection \alpha \gamma'"

shows "\gamma = \gamma'"

proof -

interpret a: galois_connection \alpha \gamma + b: galois_connection \alpha \gamma' by fact+
```

 $\begin{array}{c} \mathbf{show} \ ?thesis\\ \mathbf{qed} \end{array}$

Intuition: α is already uniquely determined by γ

```
lemma \alpha_{-} determ:

assumes "galois_connection \alpha \gamma" and "galois_connection \alpha' \gamma"

shows "\alpha = \alpha'"

proof -

interpret a: galois_connection \alpha \gamma + b: galois_connection \alpha' \gamma by fact+
```

show ?thesis qed

Recipe for counterexamples (by example):

Assume we would have asked you to show

lemma (in galois_connection) α _antimono: " $y \leq x \implies \alpha \ x \leq \alpha \ y$ " oops

First find an appropriate Galois-Connection. In our case, we take the trivial one (id, id) over the complete lattice of sets of booleans. Hint: The complete lattice of sets of booleans *bool set* and the lattice of sets of unit-type *unit set* are good candidates for finding counterexamples!

definition " $\alpha c \equiv id::(bool \ set \Rightarrow bool \ set)$ "

definition " $\gamma c \equiv id::(bool \ set \Rightarrow bool \ set)$ " interpretation $c!: \ galois_connection \ \alpha c \ \gamma c$ apply (unfold_locales) unfolding $\alpha c_def \ \gamma c_def$ by auto

Then prove a lemma that provides a counterexample

lemma

defines " $x \equiv UNIV$ " and " $y \equiv \{\}$ " shows " $\neg (y \le x \longrightarrow \alpha c \ x \le \alpha c \ y)$ " unfolding $\alpha c_def \ \gamma c_def \ x_def \ y_def$ by auto