
Technische Universität München WS 2012/13
Institut für Informatik 16. 10. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and
write the the following three lines at the top of this file.

theory Ex01

imports Main

begin

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:

“2 + (2 ::nat)” “ (2 ::nat) ∗ (5 + 3 )” “ (3 ::nat) ∗ 4 − 2 ∗ (7 + 1 )”

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.

fun count :: “ ′a list ⇒ ′a ⇒ nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and additional lemmas, if necessary) about the relation
between count and length, the function returning the length of a list.

theorem “count xs x ≤ length xs”

1



Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: “ ′a list ⇒ ′a ⇒ ′a list”

Convince yourself on some test cases that your definition of snoc behaves as expected,
for example run:

value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [] c = [c]”

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of x # xs using the
snoc function.

fun reverse :: “ ′a list ⇒ ′a list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:

value “reverse [a, b, c]”
lemma “reverse [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating reverse
and snoc to prove it.

theorem “reverse (reverse xs) = xs”

Homework 1 The doubling function

Submission until Tuesday, October 23, 10:00 am.

This homework is to be done both with pen-and-paper and with Isabelle.

You will define recursively the function double that takes one number and returns its
double. For example, we have double(3 ) = 6. Below, by “numbers” we mean “natural
numbers”.

Your first task is to define double(n) recursively on n—that is to say, define double(0 ) and
then define double(Suc(n)) in terms of double(n). You are not allowed to use addition
or multiplication in the definition.

Another task is to prove that double(m + n) = double m + double n for all numbers m
and n.

Finally, you have to prove that your recursive definition of double is correct, in that
double n = n + n for all numbers n.

2


