
Technische Universität München WS 2012/13
Institut für Informatik 6. 11. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 4

Exercise 4.1 Reflexive Transitive Closure

Theory Star (available on the course website) defines a binary relation star r, which is
the reflexive, transitive closure of the binary relation r. It is defined inductively with
the rules “star r x x” and “[[r x y ; star r y z ]] =⇒ star r x z”.

We also could have defined star the other way round, i.e., by appending steps rather
than prepending steps:

inductive star ′ :: “ ( ′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r where
“star ′ r x x” |
“ [[star ′ r x y ; r y z ]] =⇒ star ′ r x z”

Prove the following lemma. Hint: You will need an additional lemma for the induction.

lemma “star r x y =⇒ star ′ r x y”

Exercise 4.2 Proving That Numbers Are Not Even

Recall the evenness predicate ev from the lecture:

inductive ev :: “nat ⇒ bool” where
ev0 : “ev 0” |
evSS : “ev n =⇒ ev (Suc (Suc n))”

Prove the converse of rule evSS using rule inversion. Hint: There are two ways to proceed.
First, you can write a structured Isar-style proof using the cases method:

lemma “ev (Suc (Suc n)) =⇒ ev n”
proof −

assume “ev (Suc (Suc n))” then show “ev n”
proof (cases)

...

qed
qed
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Alternatively, you can write a more automated proof by using the inductive cases
command to generate elimination rules. These rules can then be used with “auto elim:”.
(If given the [elim] attribute, auto will use them by default.)

inductive cases evSS elim: “ev (Suc (Suc n))”

Next, prove that the natural number three (Suc (Suc (Suc 0 ))) is not even. Hint: You
may proceed either with a structured proof, or with an automatic one. An automatic
proof may require additional elimination rules from inductive cases.

lemma “¬ ev (Suc (Suc (Suc 0 )))”

Exercise 4.3 Binary Trees with the Same Shape

Consider this datatype of binary trees:

datatype tree = Leaf int | Node tree tree

Define an inductive binary predicate sameshape :: tree ⇒ tree ⇒ bool, where sameshape
t1 t2 means that t1 and t2 have exactly the same overall size and shape. (The elements
in the corresponding leaves may be different.)

inductive sameshape :: “tree ⇒ tree ⇒ bool” where

Now prove that the sameshape relation is transitive.

theorem “ [[sameshape t1 t2; sameshape t2 t3]] =⇒ sameshape t1 t3”

Hint: For this proof, we recommend doing an induction over t1 and t2 using rule same-
shape.induct. You will also need some elimination rules from inductive cases. (Look
at the subgoals after induction to see which patterns to use.) Finally, note that “auto
elim:” applies rules tentatively with a limited search depth, and may not find a proof
even if you have all the rules you need. You can either try the variant “auto elim!:”,
which applies rules more eagerly, or try another method like blast or force.
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Homework 4 Finite State Machines

Submission until Tuesday, November 13, 10:00am.

Finite state machines (for simplicity without initial states) can be given by a set of
final states F :: ′Q set and a transition relation of type δ::( ′Q× ′Σ× ′Q) set. Note that
(q ,a,q ′)∈δ means that there is a transition from q to q ′ labeled with a.

type synonym ( ′Q , ′Σ) LTS = “ ( ′Q× ′Σ× ′Q) set”

First define an inductive predicate accept, that characterizes the words accepted from a
given state q, i.e., accept F δ q w holds iff word w is accepted from state q.

inductive accept :: “ ′Q set ⇒ ( ′Q , ′Σ) LTS ⇒ ′Q ⇒ ′Σ list ⇒ bool”
for F δ where

The product construction is a standard construction for the intersection of two FSMs.
Define a function prod δ that returns the transition relation of the product FSM of two
given FSMs:

definition prod δ :: “ ( ′Q1 , ′Σ) LTS ⇒ ( ′Q2 , ′Σ) LTS ⇒ ( ′Q1× ′Q2 , ′Σ) LTS”

Now prove that your product accepts enough words. Hint: You will need rule induction
and rule inversion.

lemma prod complete:
assumes A: “accept F1 δ1 q1 w”
assumes B : “accept F2 δ2 q2 w”
shows “accept (F1×F2 ) (prod δ δ1 δ2 ) (q1 ,q2 ) w”
using A B

proof (induction arbitrary : q2 rule: accept .induct [case names base step])
case (base q1 )

next
case (step q1 a q1 ′ w q2 )qed

Now prove that your product does not accept too many words.

lemma prod sound :
assumes “accept (F1×F2 ) (prod δ δ1 δ2 ) (q1 ,q2 ) w”
shows “accept F1 δ1 q1 w ∧ accept F2 δ2 q2 w”

Hint to get the induction through:

proof −
{

fix q12
assume “accept (F1×F2 ) (prod δ δ1 δ2 ) q12 w”
hence “accept F1 δ1 (fst q12 ) w ∧ accept F2 δ2 (snd q12 ) w”

Insert your inductive proof here

}
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thus ?thesis using assms by auto
qed

end
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