Technische Universitat Miinchen
Institut fiir Informatik
Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

WS 2012/13
20. 11. 2012

Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 Small step equivalence

We define an equivalence relation = on programs that uses the small-step semantics.
Unlike with ~, we also demand that the programs take the same number of steps.

The following relation is the n-steps reduction relation:

inductive
nsteps :: “com x state = nat = com * state = bool”
(“—"__7160,1000,601999)

where

zero_steps: “cs — "0 cs” |

one_step: “cs — c¢s' = ¢s' = "n cs' = cs — "(Suc n) cs’"”

Prove the following lemmas:

lemma small_steps_n: “cs —* cs’ = (In. ¢cs = "n cs’)”
lemma n_small_steps: “cs — "n cs’ = cs —* ¢s'”

lemma nsteps_trans: “cs — 'nl cs’ = ¢s’ = "n2 cs” = cs = "(nl+n2) ¢

The equivalence relation is defined as follows:

definition
small_step_equiv :: “com = com = bool” (infix “~” 50) where
‘e~ c'==(stn. (¢,s) = n (SKIP, t) = (c’,s) = "n (SKIP, t))”

Prove the following lemma:

lemma small_equ_implies_big_equ: “c = ¢’ = ¢ ~ ¢'"”

How about the reverse implication?

Exercise 6.2 A different instruction set architecture

11

We consider a different instruction set which evaluates boolean expressions on the stack,

similar to arithmetic expressions:

e The boolean value Fulse is represented by the number 0, the boolean value True

is represented by any number not equal to 0.

e For every boolean operation there exists a corresponding instruction which, simi-
larly to arithmetic instructions, operates on values on top of the stack.

e The new instruction set introduces a conditional jump which pops the top-most
element from the stack and jumps over a given amount of instructions, if the
popped value corresponds to False, and otherwise goes to the next instruction.

Modify the theory Compiler by defining a suitable set of instructions, by adapting the
execution model and the compiler and by updating the correctness proof.

end

Homework 6.1 Algebra of Commands

Submission until Tuesday, November 27, 10:00am.

We define an extension of the language with nondeterministic choice (OR) and parallel
composition (||), for which we consider the small-step equivalence relation =~ defined in
Exercise 6.1. For your convenience, all the necessary notions are (re)defined below. A
template file will also be provided for you.

Your task will be to prove various algebraic laws for the small-step equivalence. The
most helpful methods will be number induction and/or pair-based rule induction over
the nsteps relation, using nsteps_induct (provided below).

datatype
com =
— sequential part as before —
| Or com com (infix “OR” 59)
| Par com com (infix “||” 59)
inductive
small_step :: “com * state = com * state = bool” (infix “—7 55)
where

— sequential part as before —

OrL: “(c1 OR ¢2,s) — (cl,s)” |

OrR: “(c1 OR ¢2,s) — (c2,s)” |

ParL: “(c1,s) = (c1',8") = (cl || ¢2,5) = (1’]| ¢2,8")" |
ParLSkip: “(SKIP || ¢,s) — (¢,8)” |

ParR: “(c2,8) — (¢2's") = (el || ¢2,s) = (cl || ¢2',s")7 |
ParRSkip: “(c || SKIP,s) — (c,s)”

inductive
nsteps :: “com * state = nat = com x state = bool”
(“—"__7160,1000,601999)

where

zero_steps[simp,intro]: “cs — "0 ¢s” |

one_stepintro]: “cs — ¢’ = ¢s’ = "n s’ = ¢s — "(Suc n) cs’”

lemmas nsteps_induct = nsteps.induct|split_format(complete)]

definition
small_step_equiv = “com = com = bool” (infix “~” 50) where
“e~c'=(stn. (¢,s) = n (SKIP, t) +— (c’, s) = "n (SKIP, t))”

As a demo, we prove that OR is commutative (w.r.t.). The proof here goes in two
steps: first lemma Or_commute_n, then the desired fact Or_commute by simply unfolding
the definition.

lemma Or_commute_n: “(c OR d, s) —"n (SKIP, t) = (d OR ¢, s) — "n (SKIP, t)”
by (induct n arbitrary: ¢ d) (fastforce intro: one_step OrL OrR)+

lemma Or_commute: “c OR d ~ d OR ¢”
unfolding small_step_equiv_def using Or_commute_n by blast

Now it’s your turn to prove commutativity and associativity of ||. You are free to do
either automatic or Isar proofs.

lemma Par_commute: “c || d = d || ¢”

lemma Par_assoc: “(c || d) || e=~c| (d] e)”

The last task of this exercise is to prove distributivity of ; over Or, namely, lemma
Seq_Or_distrib below. This will be harder then the other proofs, and therefore we provide
some guidelines.

First, you should prove the following inversion rules for Or and ; w.r.t. nsteps. (Most
likely you will need an Isar proof for the second.)

lemma Or_nsteps_invert:
assumes “(¢ OR d, s) = "n (SKIP, t)”
shows “J n1.n = Suc ni A ((¢,s) = "nl (SKIP,t) V (d, s) = "nl (SKIP, t))”

lemma Seq_nsteps_invert:
assumes “(c¢; d, s) —"n (SKIP, t)”
shows “3 nln2si. n = Suc (nl + n2) A (c,s) = "nl (SKIP,s1) A (d, s1) — "n2 (SKIP, t)”

Next, we put the above rules in a nicer elimination format:

lemma Or_nsteps_elim][elim]:

assumes “(¢ OR d, s) — "n (SKIP, t)”

and “A nl. [n = Suc nl; (¢,5) = "nl (SKIP,t)] = P’
and “A nl. [n = Suc ni; (d,s) = "nl (SKIPt)] = P”
shows P

using assms Or_nsteps_invert by blast

lemma Seq_nsteps_elim[elim)]:

assumes “(c¢; d, s) — "n (SKIP, t)” and

“N\ nln2sl. [n= Suc (nl + n2); (¢,s) = "nl (SKIP,sl); (d,s1) — "n2 (SKIP, t)] = P~
shows P

using assms Seq_nsteps_invert by blast

Now, you should prove introduction rules for Or and ; w.r.t. nsteps:

lemma Or_nsteps_introL[intro]:
assumes “(c¢,s) — "n (SKIP,t)” shows “(c OR d, s) — "(Suc n) (SKIP,t)”

lemma Or_nsteps_introR[intro:
assumes “(d,s) — "n (SKIP,t)” shows “(c OR d, s) — "(Suc n) (SKIP,t)”

lemma Seq_nsteps_intro[intro:
assumes I1: “(¢,s) — "nl (SKIP,s1)” and 2: “(d,s1) — "n2 (SKIP, t)”
shows “(c; d, s) = "(Suc (nl + n2)) (SKIP, t)”

Hint for the proof of Seq_nsteps_intro: Follow a similar route to the proof of the corre-
sponding fact about —* from theory Small_Step, namely, seq_comp. Lemma nsteps_trans
from Exercise 6.1 is also needed.

Finally, you can prove the desired distributivity law. Hint: If a fully automatic proof
does not work, try an Isar proof of the two implications emerging from <— by applying
the correct introduction/elimination rules by hand.

lemma Seq_Or_distrib_n:
“(c; (d OR e), s) = ™n (SKIP, t) <— ((¢; d) OR (c; e), s) = "n (SKIP, t)”

lemma Seq_Or_distrib: “c ; (d OR e) = (¢ ; d) OR (¢ ; €)”

Homework 6.2 Powerset Construction

Submission until Tuesday, November 27, 10:00am.

Note: This is a “bonus” exercise worth 548 additional points, making the mazrimum
possible score for all homework on this sheet 18 out of 10 points. You’ll get 5 points for
proving the lemmas, and additional 3 points for aesthetics of your proof, i.e., a confusing
apply-style script that somehow manages to prove the theorems is worth & points, while
a nice Isar-proof that makes clear the structure of the proof is worth 8 points.

Reconsider the finite state machines (FSMs) from Homework 4.

type_synonym ('Q,’Y) LTS = “('Qx'Ex’'Q) set”

inductive accept :: “'Q set = ('Q,’Y) LTS = 'Q = 'Y list = bool”
for F' § where
base: “geF = accept F § q [|”

| step[trans]: “[(¢,a,q")€6; accept F § ¢’ w]| = accept F ¢ q (aF#w)”

In this exercise, you shall define the well-known powerset construction, that converts
any finite state machine to a deterministic one.

First define the transition relation and the set of accepting states of the powerset-FSM:

definition pow.d :: “('Q,’Y) LTS = ('Q set,’S) LTS”
definition pow_F :: “'Q set = 'Q set set”

Then prove that the transition relation of the powerset-FSM is deterministic. (Note:
If you got your definitions right, this proof is a one-liner, and requires no elaborate
Isar-proof!)

lemma pow_d_det: “[(q,a,q")Epow-d §; (q,a,q"")Epow-d §] = q'=q""”

Finally prove that the powerset construction does not change the words accepted by a
state. (Note: It’s best (really!) to elaborate this proof on paper first, and then convert
it into an Isar-proof. You should prove both directions separately, and you will need to
generalize the statement in order to get the induction through.)

theorem pow_correct:
“accept F 6 q w +— accept (pow_F F) (pow-6 §) {q} w”

