
Technische Universität München WS 2012/13
Institut für Informatik 27. 11. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

1. Modify, in the theory Types, the inductive definitions of taval and tbval such that
implicit coercions are applied where necessary.

2. Extend the datatype com by a loop construct DO a TIMES c which executes
the command c exactly a times, where a is an arbitrary arithmetic expression of
integer type.

3. Adapt all proofs in the theory Types accordingly.

Hint: Isabelle already provides the coercion functions nat, int, and real.

Homework 7 Jump-Chain Optimization

Submission until Tuesday, December 4, 2012, 10:00am. One sub-task of this homework
is optional, and gives 5 bonus points.

In this homework, you shall implement a transformation that eliminates chained jumps
from machine code. To keep things simple, we write a function that only optimizes a
jump at a given index i, and only follows chained jumps one level deep.

If you do not manage to prove a lemma, set a sorry there and try the remaining lemmas.
Thus, you’ll get a partial score, even if you cannot prove one of the main lemmas. This
especially applies to the bonus-lemma!

First, write a function that updates the ith element of a list, and prove the lemmas
below:

primrec list updatei :: “ ′a list ⇒ int ⇒ ′a ⇒ ′a list” where
— Hint: It’s easiest to define this function recursively over the list, similar to op !!

lemma updatei other [simp]: “i 6=j =⇒ list updatei l i x !! j = l !! j”

lemma updatei this[simp]: “ [[0≤i ; i < isize l ]] =⇒ list updatei l i x !! i = x”

1



lemma updatei length[simp]: “length (list updatei l i x ) = length l”

Then, write a function that looks at index i, and, if there is a jump that points to a
jump, updates the jump offset to do both jumps at once. For simplicity, you only need
to optimize unconditional jumps here.

Hints:

• Be careful if the first jump jumps out of the program, i.e., to a negative program
counter, or a program counter beyond the size of the program. In those cases, you
must not change the program.

• When computing the offset for the optimized jump, remember that jump offsets
are relative to the instruction after the jump.

definition opt at :: “int ⇒ instr list ⇒ instr list” where

To get a feeling for your function, show the following lemma:

lemma opt at size[simp]: “isize (opt at i P) = isize P”

Now show that a step of the optimized program can be simulated by arbitrarily many
(actually, one or two) steps of the original program:

lemma sim opt at aux :
shows “opt at i P ` c → c ′ =⇒ P ` c →∗ c ′”

Hints: First, identify the cases where opt at does not change the program. Then, handle the case
that the program counter of c is not at index i. Finally, show the interesting case, where the
modified instruction is actually executed.

Note that you do not need induction for this proof!

Use the above lemma to show that an arbitrary execution of the optimized program has
a corresponding execution of the original program.

lemma sim opt at :
“opt at i P ` c →∗ c ′ =⇒ P ` c →∗ c ′”

Hint: To get the induction through, you must instantiate the induction rule:

apply (induct “opt at i P” rule: exec.induct)

For 5 bonus points, show the opposite direction, i.e., that for any execution of the original
program to a terminating configuration, there is also an execution of the original program
to that terminating configuration:

lemma opt at sim:
“P ` c →∗ (isize P ,s fin,stk fin) =⇒

opt at i P ` c →∗ (isize P ,s fin,stk fin)”

Hints:

• This proof is hard. Before you try this task, write a sorry here and complete the remaining
exercise sheet.

2



• You will need an induction over the number of steps taken by the original program,
such that you can apply the induction hypothesis for any smaller number of steps. See
Comp Rev .thy for an n-step version of exec, and theorem nat less induct for an appropriate
induction rule.

• If the simplifier fails to prove obvious goals, there might be too many rules, e.g., exec1 def,
in the simpset. Using simp only : or removing those rules from the simpset may help.

Similar to source-level program equivalence ∼, we can also define machine-level program
equivalence. We use a big-step version here, that only regards the results of the machine
programs

definition mi equiv (infix “∼m” 50 ) where
“P ∼

m P ′ ≡
(∀ s stk s ′ stk ′.

(P ` (0 ,s,stk) →∗ (isize P ,s ′,stk ′))
←→ (P ′ ` (0 ,s,stk) →∗ (isize P ′,s ′,stk ′))

)”

Show that ∼
m is an equivalence relation:

lemma mi refl [simp]:
lemma mi sym:

lemma mi trans[trans]:

Show that opt at preserves equivalence

lemma opt at correct : “opt at i P ∼
m P”

3


