
Technische Universität München WS 2012/13
Institut für Informatik 4. 12. 2012

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 8

Exercise 8.1 Definite Initialization Analysis

In the lecture, you have seen a definite initialization analysis that was based on the
big-step semantics. Definite initialization analysis can also be based on a small-step
semantics. Furthermore, the ternary predicate D from the lecture can be split into two
parts: a function AA :: com ⇒ name set (“assigned after”) which collects the names of
all variables assigned by a command and a binary predicate D :: name set ⇒ com ⇒ bool
which checks that a command accesses only previously assigned variables. Conceptually,
the ternary predicate from the lecture (call it D lec) and the two-step approach should
relate by the equivalence D V c ←→ D lec V c (V ∪ AA c)

1. Download the theory ex08 template and study the already defined small-step
semantics for definite analysis.

2. Define the function AA which computes the set of variables assigned after execution
of a command. Furthermore, define the predicate D which checks if a command
accesses only assigned variables, assuming the variables in the argument set are
already assigned.

3. Prove progress and preservation of D with respect to the small-step semantics,
and conclude soundness of D. You may use (and then need to prove) the lemmas
D incr and D mono.

1



Homework 8.1 Independence analysis

Submission until Tuesday, December 11, 2012, 10:00am.

In this exercise you first prove that the execution of a command only depends on its used
(i.e., read or assigned) variables. Then you use this to prove commutativity of sequential
composition for commands with disjoint used variables. You shall employ the big-step
semantics. A template will be provided for this homework.

Start with defining the (used) variables of a command, i.e., all the variables appearing
in the command. For notation convenience, you should proceed similarly to what we did
for expressions in the theory Vars, namely, register the type of commands as an instance
of the class vars—then you can use the name vars for the newly defined operation on
commands. We have started the definition, you need to add the remaining clauses.

instantiation com :: vars
fun vars com :: “com ⇒ vname set” where
“vars com SKIP = {}”

A first thing you need to prove is that the effect of executing a command is confined to
its variables, in that the part of the state not involving these variables does not change.
(Recall the eq on abbreviation from theory Vars.)

lemma confinement : “ (c,s) ⇒ s ′ =⇒ s = s ′ on (UNIV − vars c)”

Hint: The proof should go through automatically by induction.

Now you should prove that the part of the initial state not involving the variables of a
command is irrelevant for its execution. We have started the proof for you.

lemma irrelevance:
“ [[(c,s1 ) ⇒ s1 ′; s1 = s2 on X ; vars c ⊆ X ]] =⇒ ∃ s2 ′. (c,s2 ) ⇒ s2 ′ ∧ s1 ′ = s2 ′ on X”
proof (induction arbitrary : s2 rule: big step induct)

Finally, you need to prove the commutativity of sequential composition for two com-
mands having mutually disjoint variables: first a helper lemma independence aux, then
the desired fact independence. Note that in the statement of the latter we use the
big-step equivalence relation defined in theory Big Step.

lemma independence aux :
assumes v : “vars c1 ∩ vars c2 = {}” and c12 : “ (c1 ; c2 , s) ⇒ s12”
shows “ (c2 ; c1 , s) ⇒ s12”

Hint for the proof of lemma independence aux : Let X1 consist of all the variables not
used in c1, namely, UNIV − vars c1. Similarly, let X2 be UNIV − vars c2. From the
hypotheses, obtain s1 such that (c1 , s) ⇒ s1 and (c2 , s1 ) ⇒ s12. Then take the other
route (first executing c2 and then c1 ), namely, obtain s2 and s21 such that (c2 ,s) ⇒
s2 and (c1 , s2 ) ⇒ s21, also making sure to carry relevant information about X1 and
X2. (Draw a picture!) For s12 and s21, show that they are equal both on X1 and on
X2, which ensures that they are equal.

2



In the above process, you do not need induction, but need to apply the lemmas confine-
ment and irrelevance several times.

lemma independence: “vars c1 ∩ vars c2 = {} =⇒ c1 ; c2 ∼ c2 ; c1”

We also include an extra-credit task, for 5 additional points: Currently, in lemma in-
dependence we assume that the used variables of c1 and c2 are disjoint. However,
intuitively, one only needs to assume the used variables of c1 disjoint from the assigned
(written) variables of c2 and vice-versa. (Thus, e.g., c1 and c2 should be allowed to
read the same variable x provided neither of them modifies x.)

Your task to state and prove an improved version of lemma independence.

Homework 8.2 Fixed point reasoning

Submission until Tuesday, December 11, 2012, 10:00am.

In the lecture, you have seen the Knaster-Tarski least fixed point theorem. The relevant
constant is lfp :: ( ′a ⇒ ′a) ⇒ ′a, which assumes a complete lattice order ≤ on ′a and
returns, for each monotonic operator f :: ′a ⇒ ′a, its least fixed point lfp f.

In the lectures as well as in this exercise, one only deals with the case where ′a is ′b set
(the type of sets over an arbitrary type ′b) and ≤ is ⊆ (set inclusion). You need to prove
the following fact concerning function image and set complement:

lemma decomposition: “ ∃ X . X = − (g ‘ (− (f ‘ X )))”

Hint: Look up and use the theorems lfp unfold and monoI. First try to do a pen-and-
paper proof. Note that:

• If A :: ′b set, then − A denotes the complement of A, that is, the set of all elements
(of type ′b) that are not in A;

• h ‘ A denotes the image of A through h, that is, the set of all elements of the form
h a with a ∈ A.

The automatic methods (auto, blast, etc.) are well customized to handle image and
complement, and therefore you will not need to explicitly invoke any lemma about these
operators.

3


