
Technische Universität München WS 2012/13
Institut für Informatik 15. 1. 2013

Prof. Tobias Nipkow, Ph.D.
Andrei Popescu, Peter Lammich

Semantics of Programming Languages
Exercise Sheet 12

In this exercise, you will prove some properties of Galois connections—these provide a
general framework for the abstract interpretation concretization functions, such as the
for parity analysis from the lectrures.

We start by defining a slightly enriched version of the parity domain from the lectures.

datatype parity = Even | Odd | Either | Emp

Recall that Even, Odd and Either are aimed at representing information about sets of
integers: consisting of only even numbers, only odd numbers, and either odd or even
numbers, respectively. We have added a fourth element, Emp, covering the case of a set
both consisting of only even numbers and consisting of only odd number—the only such
set is the empty set.

Moreover, recall that we model the notion of containing more information as an order
relation, here denoted ≤. Thus, e.g., we need to set Even ≤ Either.

Your first task is to define ≤ on the elements of parity and then register parity as a
partial order.

instantiation parity :: order

≤ is more than a partial order: it is lattice, even a bounded one, and even a complete
one. Climb the type-class hierarchy with parity by defining the necessary operators and
proving the necessary facts.

instantiation parity :: lattice

instantiation parity :: bounded lattice

instantiation parity :: complete lattice

Extend the concretization function from the lectures by mapping Emp to the empty set:

fun γ parity :: “parity ⇒ int set” where

Think of how one came up the domain parity : the four values of parity represent degrees
of knowledge about the parity of the integers in given sets. This intuition can be modelled
by a so-called abstraction function:

definition α parity :: “int set ⇒ parity” where

1



Sometimes the desired concretization function is definable from an abstraction function—
this is the case here:

lemma γ parity α parity : “ γ parity a =
⋃
{S . α parity S ≤ a}”

Intuitively, we read α parity S ≤ x as x approximates S. (Indeed, according to the
intuitive reading of ≤, α parity S contains less information than x.) Then γ parity x
can be taken to be the largest set approximated by x.

Dually, α parity can be obtained from γ parity, defining α parity S to be the best ap-
proximation of S w.r.t. γ parity :

lemma α parity γ parity : “α parity S = Inf {a . S ⊆ γ parity a}”

The above properties can be obtained more abstractly, using the concept of Galois con-
nection:

definition galois ::
“ ( ′a::complete lattice ⇒ ′c::complete lattice) ⇒ ( ′c ⇒ ′a) ⇒ bool”
where
“galois α γ ≡ ∀ c a. α c ≤ a ←→ c ≤ γ a”

Galois connections postulate the ideal relationship between a concretization and an
abstraction: x approximates the abstraction of s iff the concretization of x approximates
s.

Show that α parity and γ parity form a Galois connection:

lemma “galois α parity γ parity”

Prove the following consequences of the Galois connection property, including monotonic-
ity of its components and the very facts we have proved about α parity and γ parity :

lemma γα infl : assumes “galois α γ” shows “c ≤ γ(α c)”

lemma αγ defl : assumes “galois α γ” shows “α(γ a) ≤ a”

lemma γ mono: assumes “galois α γ” shows “mono γ”

lemma α mono: assumes “galois α γ” shows “mono α”

lemma γ α: assumes “galois α γ” shows “ γ a = Sup {c . α c ≤ a}”

lemma α γ: assumes “galois α γ” shows “α c = Inf {a . c ≤ γ a}”

2


