Semantics of Programming Languages

Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and write the the following three lines at the top of this file.

theory Ex01 imports Main begin

Exercise 1.1 Calculating with natural numbers and integers

Use the **value** command to turn Isabelle into a fancy calculator and evaluate the following natural number expressions:

"2 + (2::nat)" "(2::int) * (5 + 3)" "(3::int) * 4 - 2 * (7 + 1)" "(3::nat) * 4 - 2 * (7 + 1)"

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a list.

fun count :: "'a list \Rightarrow 'a \Rightarrow nat"

Test your definition of *count* on some examples and prove that the results are indeed correct.

Prove the following inequality (and additional lemmas, if necessary) about the relation between *count* and *length*, the function returning the length of a list.

theorem "count xs $x \leq length xs$ "

Exercise 1.4 Adding elements to the end of a list

Define a function *snoc* that appends an element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: "'a list \Rightarrow 'a \Rightarrow 'a list"

Convince yourself on some test cases that your definition of *snoc* behaves as expected, for example run:

value "snoc [] c"

Also prove that your test cases are indeed correct, for instance show:

lemma "snoc [] c = [c]"

Next define a function *reverse* that reverses the order of elements in a list. (Do not use the existing function *rev* from the library.) Hint: Define the reverse of x # xs using the *snoc* function.

fun reverse :: "'a list \Rightarrow 'a list"

Demonstrate that your definition is correct by running some test cases, and proving that those test cases are correct. For example:

value "reverse [a, b, c]" lemma "reverse [a, b, c] = [c, b, a]"

Prove the following theorem. Hint: You need to find an additional lemma relating *reverse* and *snoc* to prove it.

theorem "reverse (reverse xs) = xs"

Homework 1 Gauss Sequence

Submission until Tuesday, October 22, 10:00am.

Homework must be sent by mail to lammich@in.tum.de. Send a *working* theory file named FirstnameLastname01.thy, that contains no *sorry*-commands.

The pen-and-paper part may be submitted by email or handed in at the tutorial.

In this homework assignment you will prove the formula for the well-known Gauss sequence:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Your first task is to use the **fun** command to define a function $sum :: nat \Rightarrow nat$ in Isabelle, that computes the sum of the first n natural numbers.

fun sum :: "nat \Rightarrow nat"

You may wish to use the **value** command to check that your definition is correct. For example, the following command should evaluate to *True*.

value "sum 3 = 1 + 2 + 3"

Now prove the Gauss sequence formula by induction over n. First, write an informal proof by hand. Your proof should contain a base case for zero, where you show that $sum(\theta)$ equals θ . Next you should have a case for successor: Fix an arbitrary m, assume the inductive hypothesis that $sum(m) = m*(m+1) \operatorname{div} 2$, and then show that $sum(Suc m) = (m+1)*(m+2) \operatorname{div} 2$.

Finally, prove the same property *formally* in Isabelle:

lemma "sum $n = n * (n+1) \operatorname{div} 2$ "