
Technische Universität München WS 2013/14
Institut für Informatik 29. 10. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 3

Exercise 3.1 Relational aval

Theory AExp defines an evaluation function aval :: aexp ⇒ state ⇒ val for arithmetic
expressions. Define a corresponding evaluation relation is aval :: aexp ⇒ state ⇒ val
⇒ bool as an inductive predicate:

inductive is aval :: “aexp ⇒ state ⇒ val ⇒ bool”

Use the introduction rules is aval .intros to prove this example lemma.

lemma “is aval (Plus (N 2 ) (Plus (V x ) (N 3 ))) s (2 + (s x + 3 ))”

Prove that the evaluation relation is aval agrees with the evaluation function aval. Show
implications in both directions, and then prove the if-and-only-if form.

lemma aval1 : “is aval a s v =⇒ aval a s = v”
lemma aval2 : “aval a s = v =⇒ is aval a s v”
theorem “is aval a s v ←→ aval a s = v”

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few
values – e.g., executing an ADD instruction on an stack of size less than two. A well-
formed sequence of instructions (e.g., one generated by comp) should never cause a stack
underflow.

In this exercise, you will define a semantics for the stack-machine that throws an excep-
tion if the program underflows the stack.

Modify the exec1 and exec - functions, such that they return an option value, None
indicating a stack-underflow.

fun exec1 :: “instr ⇒ state ⇒ stack ⇒ stack option”
fun exec :: “instr list ⇒ state ⇒ stack ⇒ stack option”

Now adjust the proof of theorem exec comp to show that programs output by the com-
piler never underflow the stack:

1



theorem exec comp: “exec (comp a) s stk = Some (aval a s # stk)”

Exercise 3.3 Boolean If expressions

We consider an alternative definition of boolean expressions, which feature a conditional
construct:

datatype ifexp = Bc ′ bool | If ifexp ifexp ifexp | Less ′ aexp aexp

1. Define a function ifval analogous to bval, which evaluates ifexp expressions.

2. Define a function translate, which translates ifexps to bexps. State and prove a
lemma showing that the translation is correct.

Homework 3.1 Let expressions (I)

Submission until Tuesday, November 5, 2013, 10:00am.

Please include the string ,,[Semantics]” into the subject-line of your submis-
sions!

The following type adds a Let construct to arithmetic expressions:

datatype lexp = N val | V vname | Plus lexp lexp | Let vname lexp lexp

The new Let constructor acts like a local variable binding: When evaluating Let x e1 e2,
we first evaluate e1, bind the resulting value to the variable x and then evaluate e2 in
the new state.

Define a function lval, which evaluates lexp expressions. Note that you can use the
notation f (x := v) to express function update. It is defined as follows:

f (a := b) = (λx . if x = a then b else f x )

fun lval :: “lexp ⇒ state ⇒ val”

Define a function that transforms such an expression into an equivalent one that does
not contain Let. Prove that your transformation is correct. Note: Do the transformation
by inlining the bound variables.

fun inline :: “lexp ⇒ aexp”
value “inline (Let ′′x ′′ (Plus (N 1 ) (N 1 )) (Plus (V ′′x ′′) (V ′′x ′′)))”

— Should return: aexp.Plus (aexp.Plus (aexp.N 1 ) (aexp.N 1 )) (aexp.Plus (aexp.N 1 ) (aexp.N
1 ))

lemma val inline: “aval (inline e) st = lval e st”

Define a function that eliminates occurrences of Let x e1 e2 that are never used, i.e.,
where x does not occur free in e2. An occurrence of a variable in an expression is called

2



free, if it is not in the body of a Let expression that binds the same variable. E.g., the
variable x occurs free in Plus (V x ) (V x ), but not in Let x (N 0 ) (Plus (V x ) (V x )).
Prove the correctness of your transformation.

fun elim :: “lexp ⇒ lexp”
lemma “lval (elim e) st = lval e st”

Some Hints:

• When different datatypes have a constructor with the same name, they can unam-
biguously be referred to using their qualified name, e.g., aexp.Plus vs. lexp.Plus.

• When you feel that the proof should be trivial to finish, you can also try the
sledgehammer command. It invokes an extensive proof search that includes more
library lemmas.

Homework 3.2 Let expressions (II)

Submission until Tuesday, November 5, 2013, 10:00am. This homework is worth 5 bonus
points.

When inlining let-expressions, the inlined expression may be exponentially larger than
the original expression. Show that, for all n, there is an expression e of size at least n,
such that its inlined version is exponentially larger.

Hints Define a function gen exp :: nat ⇒ lexp that constructs a suitable expression for
any n.

The size-function gives you the size of any datatype, including aexp and lexp. Note that
it is defined to be zero for non-recursive constructors. Other useful functions may be
integer division (a div b) and exponentiation aˆb.

Part of this homework’s challenge is to come up with the correct theorems yourself. So
make sure that the theorems you prove really state the intended proposition.

3


