
Technische Universität München WS 2013/14
Institut für Informatik 5. 11. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 4

Exercise 4.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type R :: ′s ⇒ ′s ⇒ bool. Intuitively, R
s t represents a single step from state s to state t.

The reflexive, transitive closure R∗ of R is the relation that contains a step R∗ s t, iff R
can step from s to t in any number of steps (including zero steps).

Formalize the reflexive transitive closure as inductive predicate:

inductive star :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool”

When doing so, you have the choice to append or prepend a step. In any case, the
following two lemmas should hold for your definition:

lemma star prepend : “ [[r x y ; star r y z]] =⇒ star r x z”
lemma star append : “ [[star r x y ; r y z]] =⇒ star r x z”

Now, formalize the star predicate again, this time the other way round:

inductive star ′ :: “ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool”

Prove the equivalence of your two formalizations

lemma “star r x y = star ′ r x y”

Hint: The induction method expects the assumption about the inductive predicate to be
first.

Exercise 4.2 Rule Inversion

Recall the evenness predicate ev from the lecture:

inductive ev :: “nat ⇒ bool” where
ev0 : “ev 0” |
evSS : “ev n =⇒ ev (Suc (Suc n))”

Prove the converse of rule evSS using rule inversion. Hint: There are two ways to proceed.
First, you can write a structured Isar-style proof using the cases method:

lemma “ev (Suc (Suc n)) =⇒ ev n”

1

proof −
assume “ev (Suc (Suc n))” then show “ev n”
proof (cases)

...

qed
qed

Alternatively, you can write a more automated proof by using the inductive cases
command to generate elimination rules. These rules can then be used with “auto elim:”.
(If given the [elim] attribute, auto will use them by default.)

inductive cases evSS elim: “ev (Suc (Suc n))”

Next, prove that the natural number three (Suc (Suc (Suc 0))) is not even. Hint: You
may proceed either with a structured proof, or with an automatic one. An automatic
proof may require additional elimination rules from inductive cases.

lemma “¬ ev (Suc (Suc (Suc 0)))”

Homework 4.1 Elements of a List

Submission until Tuesday, November 12, 10:00am.

Give all your proofs in Isar, not apply style

Define a recursive function elems returning the set of elements of a list:

fun elems :: “ ′a list ⇒ ′a set”

To test your definition, prove:

lemma “elems [1 ,2 ,3 ,(4 ::nat)] = {1 ,2 ,3 ,4}”

Now prove for each element x in a list xs that we can split xs in a prefix not containing
x, x itself and a rest:

lemma “x ∈ elems xs =⇒ ∃ ys zs. xs = ys @ x # zs ∧ x /∈ elems ys”

Homework 4.2 Paths in Graphs

Submission until Tuesday, November 12, 10:00am.

Give all your proofs in Isar, not apply style

A graph is specified by a set of edges: E :: (′v× ′v) set. A path in a graph from u to v
is a list of vertices [u1,. . . ,un] such that u=u1, (ui,ui+1)∈E, and (un,v)∈E. Moreover,
the empty list is a path from any node to itself.

2

For example, in the graph: {(i, i + 1) | i ∈ N}, we have that [3 ,4 ,5] is a path from 3 to
6, and [] is a path from 1 to 1.

Note that not including the last node of the path into the list simplifies the formalization.

Formalize an inductive predicate is path

inductive is path :: “ (′v× ′v) set ⇒ ′v ⇒ ′v list ⇒ ′v ⇒ bool”

Test your formalization for some examples:

lemma “is path {(i ,i+1) | i ::nat . True} 3 [3 ,4 ,5] 6”
lemma “is path {(i ,i+1) | i ::nat . True} 1 [] 1”

Prove the following two lemmas that allow you to glue together and split paths:

lemma path appendI :
assumes “is path E u p1 v”
assumes “is path E v p2 w”
shows “is path E u (p1@p2) w”

Hint: For the next lemma, do an induction over p1, and, in the induction step, use
rule-inversion on is path.

lemma path appendE :
assumes “is path E u (p1@p2) w”
shows “ ∃ v . is path E u p1 v ∧ is path E v p2 w”

3

