
Technische Universität München WS 2013/14
Institut für Informatik 12. 11. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 5

Due to SVV, there has been no tutorial on November 12th. These exercises will be
discussed in the tutorial on November 19th. The homework is due on November 26th.
You may want to wait until the tutorial before attempting the homework. Note that the
bonus homework is independent of the material discussed in the next tutorial.

Exercise 5.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c

3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c

4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Hint: Use the following definition for Or :

definition Or :: “bexp ⇒ bexp ⇒ bexp” where
“Or b1 b2 = Not (And (Not b1) (Not b2))”

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.

2. Adapt the big step semantics to include rules for the new commands.

3. Prove that c1 OR c2 ∼ c2 OR c1.

4. Prove: (IF b THEN c1 ELSE c2) ∼ ((ASSUME b; c1) OR (ASSUME (Not b);
c2))

5. Adapt the small step semantics, and the equivalence proof of big and small step
semantics.

Note: It is easiest if you take the existing theories and modify them.

1

Homework 5.1 Exceptions

Submission until Tuesday, November 26, 10:00am.

Extend IMP with exceptions. Add two constructors THROW and TRY c1 CATCH c2
to datatype com.

Use the template we provide on the web-page! Only submit a single file!

Command THROW throws an exception. The only command that can catch an excep-
tion is TRY c1 CATCH c2 : if an exception is thrown by c1, execution continues with
c2, otherwise c2 is ignored. Adjust the definitions of big-step and small-step semantics
as follows.

The big-step semantics is now of type com × state ⇒ com × state. In a big step (c,s)
⇒ (x ,t), x can only be SKIP (signalling normal termination) or THROW (signalling
that an exception was thrown but not caught).

Adjust the proof of theorem big step determ, showing that big-step semantics is deter-
ministic.

The small-step semantics is of the same type as before. There are two final configurations
now, (SKIP , t) and (THROW , t). Exceptions propagate upwards until an enclosing
handler is found. That is, until a configuration (TRY THROW CATCH c, s) is reached
and THROW can be caught.

Adjust the statement final (c,s) ←→ c = SKIP and its proof.

Adjust the equivalence proof between the two semantics such that you obtain cs ⇒ cs ′

←→ (cs →∗ cs ′ ∧ final cs ′).

Homework 5.2 Paths in Graphs

Submission until Tuesday, November 26, 10:00am. This homework is worth 5 bonus
points.

In Homework 4.2, we formulated paths in graphs. Now prove, that for any path from u
to v, there is also a path from u to v that contains each node at most once.

Hint: Theorems not distinct decomp and length induct may help.

inductive is path :: “ (′v× ′v) set ⇒ ′v ⇒ ′v list ⇒ ′v ⇒ bool”
for E where

NilI : “is path E u [] u”
| ConsI : “ [[(u,v)∈E ; is path E v l w]] =⇒ is path E u (u#l) w”

lemma path distinct :
assumes “is path E u p v”
shows “ ∃ p ′. distinct p ′ ∧ is path E u p ′ v”

2

